232 research outputs found

    The effect of vacancy-induced magnetism on electronic transport in armchair carbon nanotubes

    Full text link
    The influence of local magnetic moment formation around three kinds of vacancies on the electron conduction through metallic single-wall carbon nanotubes is studied by use of the Landauer formalism within the coherent regime. The method is based on the single-band tight-binding Hamiltonian, a surface Green's function calculation, and the mean-field Hubbard model. The numerical results show that the electronic transport is spin-polarized due to the localized magnetic moments and it is strongly dependent on the geometry of the vacancies. For all kinds of vacancies, by including the effects of local magnetic moments, the electron scattering increases with respect to the nonmagnetic vacancies case and hence, the current-voltage characteristic of the system changes. In addition, a high value for the electron-spin polarization can be obtained by applying a suitable gate voltage.Comment: 6 pages, 6 figure

    Dielectric Function of Diluted Magnetic Semiconductors in the Infrared Regime

    Get PDF
    We present a study of the dielectric function of metallic (III,Mn)V diluted magnetic semiconductors in the infrared regime. Our theoretical approach is based on the kinetic exchange model for carrier induced (III,Mn)V ferromagnetism. The dielectric function is calculated within the random phase approximation and, within this metallic regime, we treat disorder effects perturbatively and thermal effects within the mean field approximation. We also discuss the implications of this calculations on carrier concentration measurements from the optical f-sum rule and the analysis of plasmon-phonon coupled modes in Raman spectra.Comment: 6 pages, 6 figures include

    Pinning and switching of magnetic moments in bilayer graphene

    Full text link
    We examine the magnetic properties of the localized states induced by lattice vacancies in bilayer graphene with an unrestricted Hartree-Fock calculation. We show that with realistic values of the parameters and for experimentally accessible gate voltages we can have a magnetic switching between an unpolarized and a fully polarized system.Comment: 9 pages, 4 figure

    Renormalization group approach to anisotropic superconductivity

    Full text link
    The superconducting instability of the Fermi liquid state is investigated by considering anisotropic electron-boson couplings. Both electron-electron interactions and anisotropic electron-boson couplings are treated with a renormalization-group method that takes into account retardation effects. Considering a non-interacting circular Fermi surface, we find analytical solutions for the flow equations and derive a set of generalized Eliashberg equations. Electron-boson couplings with different momentum dependences are studied, and we find superconducting instabilities of the metallic state with competition between order parameters of different symmetries. Numerical solutions for some couplings are given to illustrate the frequency dependence of the vertices at different coupling regimes.Comment: 9 pages, 7 figures. Final version as published in Phys. Rev.

    Hole Pairs in the Two-Dimensional Hubbard Model

    Full text link
    The interactions between holes in the Hubbard model, in the low density, intermediate to strong coupling limit, are investigated. Dressed spin polarons in neighboring sites have an increased kinetic energy and an enhanced hopping rate. Both effects are of the order of the hopping integral and lead to an effective attraction at intermediate couplings. Our results are derived by systematically improving mean field calculations. The method can also be used to derive known properties of isolated spin polarons.Comment: 4 page

    Effect of edge decoration on the energy spectrum of semi-infinite lattices

    Full text link
    Analytical studies of the effect of edge decoration on the energy spectrum of semi-infinite one-dimensional (1D) lattice chain with Peierls phase transition and zigzag edged graphene (ZEG) are presented by means of transfer matrix method, in the frame of which the sufficient and necessary conditions for the existence of the edge states are determined. For 1D lattice chain, the zero-energy edge state exists when Peierls phase transition happens regardless whether the decoration exists or not, while the non-zero-energy edge states can be induced and manipulated through adjusting the edge decoration. On the other hand, the semi-infinite ZEG model with nearest-neighbor interaction can be mapped into the 1D lattice chain case. The non-zero-energy edge states can be induced by the decoration as well, and we can obtain the condition of the decoration on the edge for the existence of the novel edge states.Comment: 6 pages,4 figure

    Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    Get PDF
    In this work we numerically calculate the electric current through three kinds of DNA sequences (telomeric, \lambda-DNA, and p53-DNA) described by different heuristic models. A bias voltage is applied between two zig-zag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. The calculation of current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of lengths and sequence initialisation at the contacts. The current-voltage curves suggest the existence of stepped structures independent of length and sequencing initialisation at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNA, such as \lambda-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current

    Confinement of electrons in layered metals

    Full text link
    We analyze the out of plane hopping in models of layered systems where the in--plane properties deviate from Landau's theory of a Fermi liquid. We show that the hopping term acquires a non trivial energy dependence, due to the coupling to in plane excitations, and can be either relevant or irrelevant at low energies or temperatures. The latter is always the case if the Fermi level lies close to a saddle point in the dispersion relation.Comment: 4 pages, 1 eps figur

    Self-energy corrections to anisotropic Fermi surfaces

    Full text link
    The electron-electron interactions affect the low-energy excitations of an electronic system and induce deformations of the Fermi surface. These effects are especially important in anisotropic materials with strong correlations, such as copper oxides superconductors or ruthenates. Here we analyze the deformations produced by electronic correlations in the Fermi surface of anisotropic two-dimensional systems, treating the regular and singular regions of the Fermi surface on the same footing. Simple analytical expressions are obtained for the corrections, based on local features of the Fermi surface. It is shown that, even for weak local interactions, the behavior of the self-energy is non trivial, showing a momentum dependence and a self-consistent interplay with the Fermi surface topology. Results are compared to experimental observations and to other theoretical results.Comment: 13 pages, 10 figure
    corecore