3,849 research outputs found
The Reconstructed Cohort Design: A Method to Study Rare Neurodegenerative Diseases in Population-Based Settings
Rare neurodegenerative diseases are characterized by high heterogeneity and high clinical complexity, as well as low incidence and prevalence, thus making tracking small numbers of incident cases in the general population very challenging. Since it is not possible to use classical cohort studies to estimate the incidence of these rare diseases, we can "reconstruct" a theoretical cohort using case information from a well-defined geographic region collected through a surveillance system. The incidence rate is estimated as the ratio between the number of individuals at risk who were diagnosed with the disease of interest during the study period and the estimated overall amount of time individuals in the reference population spent at risk during the study period. If a series of assumptions are met, the approximate incidence proportion of a closed theoretical cohort without competing events and with the same follow-up duration can be calculated by multiplying the incidence rate with the length of the study time. This rationale relies on the presence of an effective referral system, which links all levels of the healthcare system together in the region, from general practitioners to specialized clinical centers. The reconstructed cohort design is a valid and cost-effective method to collect data on the incidence of rare neurodegenerative diseases and represents the theoretical framework for building up population-based registries
FSPM-P: towards a general functional-structural plant model for robust and comprehensive model development
In the last decade, functional-structural plant modelling (FSPM) has become a more widely accepted paradigm in crop and tree production, as 3D models for the most important crops have been proposed. Given the wider portfolio of available models, it is now appropriate to enter the next level in FSPM development, by introducing more efficient methods for model development. This includes the consideration of model reuse (by modularisation), combination and comparison, and the enhancement of existing models. To facilitate this process, standards for design and communication need to be defined and established. We present a first step towards an efficient and general, i.e., not speciesspecific FSPM, presently restricted to annual or bi-annual plants, but with the potential for extension and further generalization.
Model structure is hierarchical and object-oriented, with plant organs being the base-level objects and plant individual and canopy the higher-level objects. Modules for the majority of physiological processes are incorporated, more than in other platforms that have a similar aim (e.g., photosynthesis, organ formation and growth). Simulation runs with several general parameter sets adopted from the literature show that the present prototypewas able to reproduce a plausible output range for different crops (rapeseed, barley, etc.) in terms of both the dynamics and final values (at harvest time) of model state variables such as assimilate production, organ biomass, leaf area and architecture
Real-time switching between multiple steady-states in quantum transport
We study transport through an interacting model system consisting of a
central correlated site coupled to finite bandwidth tight-binding leads, which
are considered as effectively noninteracting. Its nonequilibrium properties are
determined by real-time propagation of the Kadanoff-Baym equations after
applying a bias voltage to the system. The electronic interactions on the
central site are incorporated by means of self-energy approximations at
Hartree-Fock, second Born and GW level. We investigate the conditions under
which multiple steady-state solutions occur within different self-energy
approximations, and analyze in detail the nature of these states from an
analysis of their spectral functions. At the Hartree-Fock level at least two
stable steady-state solutions with different densities and currents can be
found. By applying a gate voltage-pulse at a given time we are able to switch
between these solutions. With the same parameters we find only one steady-state
solution when the self-consistent second Born and GW approximations are
considered. We therefore conclude that treatment of many-body interactions
beyond mean-field can destroy bistability and lead to qualitatively different
results as compared those at mean-field level.Comment: 10 pages, 8 figures, Submitted at "Progress in Nonequilibrium Green's
Functions IV" conferenc
Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model
We study time-dependent electron transport through an Anderson model. The
electronic interactions on the impurity site are included via the self-energy
approximations at Hartree-Fock (HF), second Born (2B), GW, and T-Matrix level
as well as within a time-dependent density functional (TDDFT) scheme based on
the adiabatic Bethe-Ansatz local density approximation (ABALDA) for the
exchange correlation potential. The Anderson model is driven out of equilibrium
by applying a bias to the leads and its nonequilibrium dynamics is determined
by real-time propagation. The time-dependent currents and densities are
compared to benchmark results obtained with the time-dependent density matrix
renormalization group (tDMRG) method. Many-body perturbation theory beyond HF
gives results in close agreement with tDMRG especially within the 2B
approximation. We find that the TDDFT approach with the ABALDA approximation
produces accurate results for the densities on the impurity site but
overestimates the currents. This problem is found to have its origin in an
overestimation of the lead densities which indicates that the exchange
correlation potential must attain nonzero values in the leads.Comment: 11 pages, 9 figure
Oscillations of dark solitons in trapped Bose-Einstein condensates
We consider a one-dimensional defocusing Gross--Pitaevskii equation with a
parabolic potential. Dark solitons oscillate near the center of the potential
trap and their amplitude decays due to radiative losses (sound emission). We
develop a systematic asymptotic multi-scale expansion method in the limit when
the potential trap is flat. The first-order approximation predicts a uniform
frequency of oscillations for the dark soliton of arbitrary amplitude. The
second-order approximation predicts the nonlinear growth rate of the
oscillation amplitude, which results in decay of the dark soliton. The results
are compared with the previous publications and numerical computations.Comment: 13 pages, 3 figure
The trapping of equatorial magnetosonic waves in the Earth’s outer plasmasphere
Abstract We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\u27s plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\u27s plasmasphere at locations away from the generation region. Key Points Magnetosonic waves are excited by ion ring distributions near the plasmapauseMagnetosonic waves are trapped in a limited radial region in the plasmasphereMagnetosonic waves are modulated by local density structures
Dynamical Coulomb Blockade and the Derivative Discontinuity of Time-Dependent Density Functional Theory
The role of the discontinuity of the exchange-correlation potential of
density functional theory is studied in the context of electron transport and
shown to be intimately related to Coulomb blockade. By following the time
evolution of an interacting nanojunction attached to biased leads, we find
that, instead of evolving to a steady state, the system reaches a dynamical
state characterized by correlation-induced current oscillations. Our results
establish a dynamical picture of Coulomb blockade manifesting itself as a
periodic sequence of charging and discharging of the nanostructure.Comment: to appear in Physical Review Letter
Dark resonances as a probe for the motional state of a single ion
Single, rf-trapped ions find various applications ranging from metrology to
quantum computation. High-resolution interrogation of an extremely weak
transition under best observation conditions requires an ion almost at rest. To
avoid line-broadening effects such as the second order Doppler effect or rf
heating in the absence of laser cooling, excess micromotion has to be
eliminated as far as possible. In this work the motional state of a confined
three-level ion is probed, taking advantage of the high sensitivity of observed
dark resonances to the trapped ion's velocity. Excess micromotion is controlled
by monitoring the dark resonance contrast with varying laser beam geometry. The
influence of different parameters such as the cooling laser intensity has been
investigated experimentally and numerically
Energy-banded ions in Saturn's magnetosphere
Using data from the Cassini Plasma Spectrometer ion mass spectrometer, we report the first observation of energy-banded ions at Saturn. Observed near midnight at relatively high magnetic latitudes, the banded ions are dominantly H+, and they occupy the range of energies typically associated with the thermal pickup distribution in the inner magnetosphere (L < 10), but their energies decline monotonically with increasing radial distance (or time or decreasing latitude). Their pitch angle distribution suggests a source at low (or slightly southern) latitudes. The band energies, including their pitch angle dependence, are consistent with a bounce-resonant interaction between thermal H+ ions and the standing wave structure of a field line resonance. There is additional evidence in the pitch angle dependence of the band energies that the particles in each band may have a common time of flight from their most recent interaction with the wave, which may have been at slightly southern latitudes. Thus, while the particles are basically bounce resonant, their energization may be dominated by their most recent encounter with the standing wave
Energy-banded ions in Saturn's magnetosphere
Using data from the Cassini Plasma Spectrometer ion mass spectrometer, we report the first observation of energy-banded ions at Saturn. Observed near midnight at relatively high magnetic latitudes, the banded ions are dominantly H+, and they occupy the range of energies typically associated with the thermal pickup distribution in the inner magnetosphere (L < 10), but their energies decline monotonically with increasing radial distance (or time or decreasing latitude). Their pitch angle distribution suggests a source at low (or slightly southern) latitudes. The band energies, including their pitch angle dependence, are consistent with a bounce-resonant interaction between thermal H+ ions and the standing wave structure of a field line resonance. There is additional evidence in the pitch angle dependence of the band energies that the particles in each band may have a common time of flight from their most recent interaction with the wave, which may have been at slightly southern latitudes. Thus, while the particles are basically bounce resonant, their energization may be dominated by their most recent encounter with the standing wave
- …