51 research outputs found

    Development of in vitro systems to study IFN signalling in gilthead seabream (Sparus aurata)

    Get PDF
    Type I interferon (IFN I) triggers specific signalling pathways leading to the activation of the innate immune defence of vertebrates against viral infections. In contrats, type II IFN (IFN II) is generally accepted to be part of the adaptive response. Among IFN I-stimulated genes, those coding the Mx proteins play a main role due to the direct antiviral activity of these proteins. The study of Mx genes in gilthead seabream, one of the most important species in the Mediterranean aquaculture, is especially interesting, as this species displays a high natural resistance to viral diseases, and behaves as asymptomatic carrier and/or reservoir of several viruses, such as viral nervous necrosis virus (VNNV), infectious pancreatic necrosis virus (IPNV), and viral haemorrhagic septicaemia virus (VHSV), which are pathogenic to other fish species. Three Mx genes (Mx1, Mx2, and Mx3) have been identified in S. aurata, showing the three proteins a wide spectrum of antiviral activity. The structure of the three promoters (pMx1, pMx2 and pMx3) has been disclosed, and their response to IFN I, IPNV and VHSV indicated a clear induction of the three promoters, with some differences in the kinetics and magnitude of the response. Several studies evidenced the important role of Mx transcription regulation on virus-host interaction: i) Mx promoters can respond to both IFN I and IFN II, thus Mx might be the link between innate and adaptive immunity; ii) Mx activation is blocked by several viruses, thus Mx transcription is the target of their IFN I antagonistic activity; and iii) A fish cell line modified with the promoter of a fish Mx gene was used to measure viraemia in serum with high sensitivity. Therefore, assessing the regulatory mechanisms controlling the transcription of fish Mx genes could significantly contribute to both, understanding virus-host interactions, and designing strategies to control viral infections. In our case, this approach can also give light to understand the successful antiviral strategies developed by gilthead seabream in nature. Thus, the purpose of the present work was to develop three stable transgenic cell lines expressing the firefly luciferase gene under the control of the gilthead seabream Mx promoters. These in vitro systems were established and their response to poly I:C, and to two viral infections was characterized. In the case of IPNV, a clear antagonistic activity was observed for pMx2, as the activity of the promoter was 78.53% lower, however, this effect was not observed for pMx1 and pMx3. When cells were infected with VHSV, no changes in the promoters’ activity were detected, thus indicating that seabream Mx promoters are not targeted by VHSV antagonistic activity. These results confirm the specificity of the interactions between each virus/promoter combination, and support the use of the three cell lines developed as useful tools to characterize virus-host interactions in this species. Further studies aimed at the identification of the molecular mechanisms behind our observations will allow us to get more insight into this complex system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Differential induction of the gilthead seabream Mx1, Mx2 and Mx3 promoters by IPNV and VHSV

    Get PDF
    Type I interferon (IFN I) system triggers specific signalling pathways leading to the activation of the innate immune defence of vertebrates against viral infections. The complex expression regulation of Interferon Stimulated Genes (ISGs) is responsible for the control of the IFN I response. Hence, one of the key issues in understanding virus-host interactions relies on the knowledge of the regulatory mechanisms governing ISGs expression. Among ISGs, the Mx proteins play a main role due to their direct antiviral activity. The study of Mx genes in the farmed fish gilthead seabream is especially interesting, since this species displays an unusually high natural resistance to viral diseases, and behaves as an asymptomatic carrier and/or reservoir of several viruses, such as infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV), pathogenic to other fish species. Three independent Mx genes (Mx1, Mx2, and Mx3) have been identified in this species, showing the three proteins a wide spectrum of antiviral activity. The structure of the three promoters (pMx1, pMx2 and pMx3) has been disclosed, and their response to poly I:C characterized in RTG-2 cells, where a clear induction of the three promoters, although with some differences in the kinetics and magnitude of the response, was observed. To further analyse these promoters, the response of pMx1, pMx2 and pMx3 to two viral infections has been evaluated in the present study. For that purpose, RTG-2 cells were transiently transfected with plasmids containing each promoter driving the luciferase gene, and subsequently inoculated with either IPNV or VHSV. Although the three promoters were induced by IPNV and VHSV, several differences were recorded. In general, the response was stronger in cells inoculated with VHSV compared to IPNV-inoculated cells, and the fold induction was higher for pMx2. These results highlight the specific regulation that controls the activity of each promoter, and support the idea that a complex interaction between host cells, specific Mx promoters, and viruses, is the responsible of the final outcome of a viral infection, in terms of Mx induction. The authors want to thank Dr. C. P. Dopazo (University of Santiago de Compostela, Spain) for supplying the VHSV isolate used in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Revista del Consejo Superior de Investigaciones Científicas

    Get PDF
    Alimentación del meloncillo Herpestes ichneumon y de la gineta Genetta genetta en la Reserva Biológica de Doñana, S.O. de la Península Ibérica.Determinación de la edad en Rana perezi Seoane, 1885. Aplicación al análisis del crecimiento somático de poblaciones.Influencias ambientales en la variación del tamaño, forma y peso de los huevos de la collalba rubia (Oenanthe hispanica L.)Características de un coro de sapos corredores (Bufo calamita) en el sureste de España.Estrategias alimentarias del ciervo (Cervus elaphus L.) en Montes de ToledoDistribución de los quirópteros de la provincia de Orense (Noroeste de España).Ecología trófica del lince ibérico en Doñana durante un periodo secoDesarrollo larvario de la rana común (Rana perezi) (anura: ranidae) en charcas temporales del noroeste de la Península Ibérica.Régimen alimenticio del mirlo común (Turdus merula) en el sureste de la Península Ibérica durante el periodo otoño-invierno.Reproducción del gorrión molinero (Passer montanus) en las Islas Canarias.Relación entre la cobertura vegetal y la distribución de nidos en las colonias de pagaza piconegraPeer reviewe

    Serotypes and Clonal Composition of Streptococcus pneumoniae Isolates Causing IPD in Children and Adults in Catalonia before 2013 to 2015 and after 2017 to 2019 Systematic Introduction of PCV13

    Get PDF
    The goal of this study was to investigate the distribution of serotypes and clonal composition of Streptococcus pneumoniae isolates causing invasive pneumococcal disease (IPD) in Catalonia, before and after systematic introduction of PCV13. Pneumococcal strains isolated from normally sterile sites obtained from patients of all ages with IPD received between 2013 and 2019 from 25 health centers of Catalonia were included. Two study periods were defined: presystematic vaccination period (2013 and 2015) and systematic vaccination period (SVP) (2017 to 2019). A total of 2,303 isolates were analyzed. In the SVP, there was a significant decrease in the incidence of IPD cases in children 5 to 17 years old (relative risk [RR] 0.61; 95% confidence interval [CI] 0.38 to 0.99), while there was a significant increase in the incidence of IPD cases in 18- to 64-year-old adults (RR 1.33; 95% CI 1.16 to 1.52) and adults over 65 years old (RR 1.23; 95% CI 1.09 to 1.38). Serotype 8 was the major emerging serotype in all age groups except in 5- to 17-year-old children. In children younger than 5 years old, the main serotypes in SVP were 24F, 15A, and 3, while in adults older than 65 years they were serotypes 3, 8, and 12F. A significant decrease in the proportions of clonal complexes CC156, CC191, and ST306 and an increase in those of CC180, CC53, and CC404 were observed. A steady decrease in the incidence of IPD caused by PCV13 serotypes indicates the importance and impact of systematic vaccination. The increase of non-PCV13 serotypes highlights the need to expand serotype coverage in future vaccines and rethink vaccination programs for older adults. IMPORTANCE We found that with the incorporation of the PCV13 vaccine, the numbers of IPD cases caused by serotypes included in this vaccine decreased in all of the age groups. Still, there was an unforeseen increase of the serotypes not included in this vaccine causing IPD, especially in the >65-year-old group. Moreover, a significant increase of serotype 3 included in the vaccine has been observed; this event has been reported by other researchers. These facts call for the incorporation of more serotypes in future vaccines and a more thorough surveillance of the dynamics of this microorganism

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19

    Characterising the KMP-11 and HSP-70 recombinant antigens' humoral immune response profile in chagasic patients

    Get PDF
    11 pages, 6 figures.-- The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2334/9/186/pre pubBackground: Antigen specificity and IgG subclass could be significant in the natural history of Chagas' disease. The relationship between the different stages of human Chagas' disease and the profiles of total IgG and its subclasses were thus analysed here; they were directed against a crude T. cruzi extract and three recombinant antigens: the T. cruzi kinetoplastid membrane protein-11 (rKMP-11), an internal fragment of the T. cruzi HSP-70 protein192-433, and the entire Trypanosoma rangeli HSP-70 protein. Methods: Seventeen Brazilian acute chagasic patients, 50 Colombian chronic chagasic patients (21 indeterminate and 29 cardiopathic patients) and 30 healthy individuals were included. Total IgG and its subtypes directed against the above-mentioned recombinant antigens were determined by ELISA tests. Results: The T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins were able to distinguish both acute from chronic chagasic patients and infected people from healthy individuals. Specific antibodies to T. cruzi crude antigen in acute patients came from IgG3 and IgG4 subclasses whereas IgG1 and IgG3 were the prevalent isotypes in indeterminate and chronic chagasic patients. By contrast, the specific prominent antibodies in all disease stages against T. cruzi KMP-11 and T. rangeli HSP-70 recombinant antigens were the IgG1 subclass.This work was supported by Colciencias Research project No. 1203-333- 18692. IDF was supported by Colciencias and the Universidad Javeriana's Young Researcher 2008 Programme (Bogotá, Colombia). MCT and MCL were supported by P06-CTS-02242 Grant from PAI (Junta de Andalucia) and RICET-RD06/0021-0014, Spain. MS received financial support from the Brazilian agency - CNPq.Peer reviewe

    Effectiveness of a strategy that uses educational games to implement clinical practice guidelines among Spanish residents of family and community medicine (e-EDUCAGUIA project):A clinical trial by clusters

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias FIS Grant Number PI11/0477 ISCIII.-REDISSEC Proyecto RD12/0001/0012 AND FEDER Funding.Background: Clinical practice guidelines (CPGs) have been developed with the aim of helping health professionals, patients, and caregivers make decisions about their health care, using the best available evidence. In many cases, incorporation of these recommendations into clinical practice also implies a need for changes in routine clinical practice. Using educational games as a strategy for implementing recommendations among health professionals has been demonstrated to be effective in some studies; however, evidence is still scarce. The primary objective of this study is to assess the effectiveness of a teaching strategy for the implementation of CPGs using educational games (e-learning EDUCAGUIA) to improve knowledge and skills related to clinical decision-making by residents in family medicine. The primary objective will be evaluated at 1 and 6months after the intervention. The secondary objectives are to identify barriers and facilitators for the use of guidelines by residents of family medicine and to describe the educational strategies used by Spanish teaching units of family and community medicine to encourage implementation of CPGs. Methods/design: We propose a multicenter clinical trial with randomized allocation by clusters of family and community medicine teaching units in Spain. The sample size will be 394 residents (197 in each group), with the teaching units as the randomization unit and the residents comprising the analysis unit. For the intervention, both groups will receive an initial 1-h session on clinical practice guideline use and the usual dissemination strategy by e-mail. The intervention group (e-learning EDUCAGUIA) strategy will consist of educational games with hypothetical clinical scenarios in a virtual environment. The primary outcome will be the score obtained by the residents on evaluation questionnaires for each clinical practice guideline. Other included variables will be the sociodemographic and training variables of the residents and the teaching unit characteristics. The statistical analysis will consist of a descriptive analysis of variables and a baseline comparison of both groups. For the primary outcome analysis, an average score comparison of hypothetical scenario questionnaires between the EDUCAGUIA intervention group and the control group will be performed at 1 and 6months post-intervention, using 95% confidence intervals. A linear multilevel regression will be used to adjust the model. Discussion: The identification of effective teaching strategies will facilitate the incorporation of available knowledge into clinical practice that could eventually improve patient outcomes. The inclusion of information technologies as teaching tools permits greater learning autonomy and allows deeper instructor participation in the monitoring and supervision of residents. The long-term impact of this strategy is unknown; however, because it is aimed at professionals undergoing training and it addresses prevalent health problems, a small effect can be of great relevance. Trial registration: ClinicalTrials.gov: NCT02210442.Publisher PDFPeer reviewe

    First Latin American clinical practice guidelines for the treatment of systemic lupus erythematosus: Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)-Pan-American League of Associations of Rheumatology (PANLAR)

    Get PDF
    Systemic lupus erythematosus (SLE), a complex and heterogeneous autoimmune disease, represents a significant challenge for both diagnosis and treatment. Patients with SLE in Latin America face special problems that should be considered when therapeutic guidelines are developed. The objective of the study is to develop clinical practice guidelines for Latin American patients with lupus. Two independent teams (rheumatologists with experience in lupus management and methodologists) had an initial meeting in Panama City, Panama, in April 2016. They selected a list of questions for the clinical problems most commonly seen in Latin American patients with SLE. These were addressed with the best available evidence and summarised in a standardised format following the Grading of Recommendations Assessment, Development and Evaluation approach. All preliminary findings were discussed in a second face-to-face meeting in Washington, DC, in November 2016. As a result, nine organ/system sections are presented with the main findings; an 'overarching' treatment approach was added. Special emphasis was made on regional implementation issues. Best pharmacologic options were examined for musculoskeletal, mucocutaneous, kidney, cardiac, pulmonary, neuropsychiatric, haematological manifestations and the antiphospholipid syndrome. The roles of main therapeutic options (ie, glucocorticoids, antimalarials, immunosuppressant agents, therapeutic plasma exchange, belimumab, rituximab, abatacept, low-dose aspirin and anticoagulants) were summarised in each section. In all cases, benefits and harms, certainty of the evidence, values and preferences, feasibility, acceptability and equity issues were considered to produce a recommendation with special focus on ethnic and socioeconomic aspects. Guidelines for Latin American patients with lupus have been developed and could be used in similar settings.Fil: Pons Estel, Bernardo A.. Centro Regional de Enfermedades Autoinmunes y Reumáticas; ArgentinaFil: Bonfa, Eloisa. Universidade de Sao Paulo; BrasilFil: Soriano, Enrique R.. Instituto Universitario Hospital Italiano de Buenos Aires. Rectorado.; ArgentinaFil: Cardiel, Mario H.. Centro de Investigación Clínica de Morelia; MéxicoFil: Izcovich, Ariel. Hospital Alemán; ArgentinaFil: Popoff, Federico. Hospital Aleman; ArgentinaFil: Criniti, Juan M.. Hospital Alemán; ArgentinaFil: Vásquez, Gloria. Universidad de Antioquia; ColombiaFil: Massardo, Loreto. Universidad San Sebastián; ChileFil: Duarte, Margarita. Hospital de Clínicas; ParaguayFil: Barile Fabris, Leonor A.. Hospital Angeles del Pedregal; MéxicoFil: García, Mercedes A.. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Amigo, Mary Carmen. Centro Médico Abc; MéxicoFil: Espada, Graciela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Catoggio, Luis J.. Hospital Italiano. Instituto Universitario. Escuela de Medicina; ArgentinaFil: Sato, Emilia Inoue. Universidade Federal de Sao Paulo; BrasilFil: Levy, Roger A.. Universidade do Estado de Rio do Janeiro; BrasilFil: Acevedo Vásquez, Eduardo M.. Universidad Nacional Mayor de San Marcos; PerúFil: Chacón Díaz, Rosa. Policlínica Méndez Gimón; VenezuelaFil: Galarza Maldonado, Claudio M.. Corporación Médica Monte Sinaí; EcuadorFil: Iglesias Gamarra, Antonio J.. Universidad Nacional de Colombia; ColombiaFil: Molina, José Fernando. Centro Integral de Reumatología; ColombiaFil: Neira, Oscar. Universidad de Chile; ChileFil: Silva, Clóvis A.. Universidade de Sao Paulo; BrasilFil: Vargas Peña, Andrea. Hospital Pasteur Montevideo; UruguayFil: Gómez Puerta, José A.. Hospital Clinic Barcelona; EspañaFil: Scolnik, Marina. Instituto Universitario Hospital Italiano de Buenos Aires. Rectorado.; ArgentinaFil: Pons Estel, Guillermo J.. Centro Regional de Enfermedades Autoinmunes y Reumáticas; Argentina. Hospital Provincial de Rosario; ArgentinaFil: Ugolini Lopes, Michelle R.. Universidade de Sao Paulo; BrasilFil: Savio, Verónica. Instituto Universitario Hospital Italiano de Buenos Aires. Rectorado.; ArgentinaFil: Drenkard, Cristina. University of Emory; Estados UnidosFil: Alvarellos, Alejandro J.. Hospital Privado Universitario de Córdoba; ArgentinaFil: Ugarte Gil, Manuel F.. Universidad Cientifica del Sur; Perú. Hospital Nacional Guillermo Almenara Irigoyen; PerúFil: Babini, Alejandra. Instituto Universitario Hospital Italiano de Buenos Aires. Rectorado.; ArgentinaFil: Cavalcanti, André. Universidade Federal de Pernambuco; BrasilFil: Cardoso Linhares, Fernanda Athayde. Hospital Pasteur Montevideo; UruguayFil: Haye Salinas, Maria Jezabel. Hospital Privado Universitario de Córdoba; ArgentinaFil: Fuentes Silva, Yurilis J.. Universidad de Oriente - Núcleo Bolívar; VenezuelaFil: Montandon De Oliveira E Silva, Ana Carolina. Universidade Federal de Goiás; BrasilFil: Eraso Garnica, Ruth M.. Universidad de Antioquia; ColombiaFil: Herrera Uribe, Sebastián. Hospital General de Medellin Luz Castro de Gutiérrez; ColombiaFil: Gómez Martín, DIana. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Robaina Sevrini, Ricardo. Universidad de la República; UruguayFil: Quintana, Rosana M.. Hospital Provincial de Rosario; Argentina. Centro Regional de Enfermedades Autoinmunes y Reumáticas; ArgentinaFil: Gordon, Sergio. Hospital Interzonal General de Agudos Dr Oscar Alende. Unidad de Reumatología y Enfermedades Autoinmunes Sistémicas; ArgentinaFil: Fragoso Loyo, Hilda. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Rosario, Violeta. Hospital Docente Padre Billini; República DominicanaFil: Saurit, Verónica. Hospital Privado Universitario de Córdoba; ArgentinaFil: Appenzeller, Simone. Universidade Estadual de Campinas; BrasilFil: Dos Reis Neto, Edgard Torres. Universidade Federal de Sao Paulo; BrasilFil: Cieza, Jorge. Hospital Nacional Edgardo Rebagliati Martins; PerúFil: González Naranjo, Luis A.. Universidad de Antioquia; ColombiaFil: González Bello, Yelitza C.. Ceibac; MéxicoFil: Collado, María Victoria. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Sarano, Judith. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Retamozo, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Sattler, María E.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Gamboa Cárdenas, Rocio V.. Hospital Nacional Guillermo Almenara Irigoyen; PerúFil: Cairoli, Ernesto. Universidad de la República; UruguayFil: Conti, Silvana M.. Hospital Provincial de Rosario; ArgentinaFil: Amezcua Guerra, Luis M.. Instituto Nacional de Cardiologia Ignacio Chavez; MéxicoFil: Silveira, Luis H.. Instituto Nacional de Cardiologia Ignacio Chavez; MéxicoFil: Borba, Eduardo F.. Universidade de Sao Paulo; BrasilFil: Pera, Mariana A.. Hospital Interzonal General de Agudos General San Martín; ArgentinaFil: Alba Moreyra, Paula B.. Universidad Nacional de Córdoba. Facultad de Medicina; ArgentinaFil: Arturi, Valeria. Hospital Interzonal General de Agudos General San Martín; ArgentinaFil: Berbotto, Guillermo A.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Gerling, Cristian. Hospital Interzonal General de Agudos Dr Oscar Alende. Unidad de Reumatología y Enfermedades Autoinmunes Sistémicas; ArgentinaFil: Gobbi, Carla Andrea. Universidad Nacional de Córdoba. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gervasoni, Viviana L.. Hospital Provincial de Rosario; ArgentinaFil: Scherbarth, Hugo R.. Hospital Interzonal General de Agudos Dr Oscar Alende. Unidad de Reumatología y Enfermedades Autoinmunes Sistémicas; ArgentinaFil: Brenol, João C. Tavares. Hospital de Clinicas de Porto Alegre; BrasilFil: Cavalcanti, Fernando. Universidade Federal de Pernambuco; BrasilFil: Costallat, Lilian T. Lavras. Universidade Estadual de Campinas; BrasilFil: Da Silva, Nilzio A.. Universidade Federal de Goiás; BrasilFil: Monticielo, Odirlei A.. Hospital de Clinicas de Porto Alegre; BrasilFil: Seguro, Luciana Parente Costa. Universidade de Sao Paulo; BrasilFil: Xavier, Ricardo M.. Hospital de Clinicas de Porto Alegre; BrasilFil: Llanos, Carolina. Universidad Católica de Chile; ChileFil: Montúfar Guardado, Rubén A.. Instituto Salvadoreño de la Seguridad Social; El SalvadorFil: Garcia De La Torre, Ignacio. Hospital General de Occidente; MéxicoFil: Pineda, Carlos. Instituto Nacional de Rehabilitación; MéxicoFil: Portela Hernández, Margarita. Umae Hospital de Especialidades Centro Medico Nacional Siglo Xxi; MéxicoFil: Danza, Alvaro. Hospital Pasteur Montevideo; UruguayFil: Guibert Toledano, Marlene. Medical-surgical Research Center; CubaFil: Reyes, Gil Llerena. Medical-surgical Research Center; CubaFil: Acosta Colman, Maria Isabel. Hospital de Clínicas; ParaguayFil: Aquino, Alicia M.. Hospital de Clínicas; ParaguayFil: Mora Trujillo, Claudia S.. Hospital Nacional Edgardo Rebagliati Martins; PerúFil: Muñoz Louis, Roberto. Hospital Docente Padre Billini; República DominicanaFil: García Valladares, Ignacio. Centro de Estudios de Investigación Básica y Clínica; MéxicoFil: Orozco, María Celeste. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Burgos, Paula I.. Pontificia Universidad Católica de Chile; ChileFil: Betancur, Graciela V.. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Alarcón, Graciela S.. Universidad Peruana Cayetano Heredia; Perú. University of Alabama at Birmingahm; Estados Unido
    corecore