12,607 research outputs found

    The characteristics of the flow field over the mid-upper fuselage of Lancaster P. A. 474

    Get PDF
    This note describes a series of tests conducted to determine the characteristics of the flow field over the mid-upper fuselage of. Lancaster P. A, 474. The range of the tests was to include a determination of the distributions of total head, static pressure and velocity together with the flow directional characteristics in the pitching plane for a number of aircraft flight configurations as listed in paragraph 1. 2. Curves are presented in Figs. 9, 20 - 25, showing the flow directional characteristics and the distributions of static pressure and velocity in the region of investigation

    Mixing and reaction studies of hydrazine and nitrogen tetroxide using photographic and spectral techniques

    Get PDF
    Mixing and reaction studies of hydrazine and nitrogen tetroxide using photographic and spectral technique

    Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation

    Full text link
    We have applied Pade approximants to perturbative QCD calculations of event shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2) prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for 15 observables, and in each case determined alpha_s(M_Z^2) from comparison with hadronic Z^0 decay data from the SLD experiment. We found the scatter among the alpha_s(M_Z^2) values to be significantly reduced compared with the standard O(alpha_s^2) determination, implying that the Pade method provides at least a partial approximation of higher-order perturbative contributions to event shape observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters

    The proto--neutron--star dynamo -- viability and impediments

    Full text link
    We study convective motions taken from hydrodynamic simulations of rotating proto--neutron stars (PNSs) with respect to their ability to excite a dynamo instability which may be responsible for the giant neutron star magnetic fields. Since it is impossible to simulate the magnetic field evolution employing the actual magnetic Reynolds numbers (\Rm) resulting from the hydrodynamic simulations, (smallest) critical \Rms and the corresponding field geometries are derived on the kinematic level by rescaling the velocity amplitudes. It turns out that the actual values of \Rm are by many orders of magnitude larger than the critical values found. A dynamo might therefore start to act vigorously very soon after the onset of convection. But as in general dynamo growth rates are non--monotonous functions of \Rm the later fate of the magnetic field is uncertain. Hence, no reliable statements on the existence and efficiency of PNS dynamos can be drawn without considering the interplay of magnetic field and convection from the beginning. Likewise, in so far as convection inside the PNS is regarded to be essential in re--launching the supernova explosion, a revision of its role in this respect could turn out to be necessary.Comment: 7 pages, 4 figures, accepted by Astronomy & Astrophysic

    Electromechanical systems with transient high power response operating from a resonant AC link

    Get PDF
    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD)

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    Testing the models: NIR imaging and spectroscopy of the benchmark T-dwarf binary Eps Indi B

    Full text link
    The relative roles of metallicity and surface gravity on the near-infrared spectra of late-T brown dwarfs are not yet fully understood, and evolutionary models still need to be calibrated in order to provide accurate estimates of brown dwarf physical parameters from measured spectra. The T-type brown dwarfs Eps Indi Ba and Bb forming the tightly bound binary Eps Indi B, which orbits the K4V star Eps Indi A, are nowadays the only such benchmark T dwarfs for which all important physical parameters such as metallicity, age and mass are (or soon will be) known. We present spatially resolved VLT/NACO images and low resolution spectra of Eps Indi B in the J, H and K near-infrared bands. The spectral types of Eps Indi Ba and Bb are determined by direct comparison of the flux-calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices. Eps Indi Bb is confirmed as a T6 while the spectral type of Eps Indi Ba is T1.5 so somewhat later than the previously reported T1. Constrained values for surface gravity and effective temperature are derived by comparison with model spectra. The evolutionary models predict masses around about 53 M_J for Eps Indi Ba and about 34 M_J for Eps Indi Bb, slightly higher than previously reported values. The suppressed J-band and enhanced K-band flux of Eps Indi Ba indicates that a noticeable cloud layer is still present in a T1.5 dwarf while no clouds are needed to model the spectrum of Eps Indi Bb.Comment: 7 pages, 5 figures, accepted by Ap
    corecore