22,991 research outputs found
Space shuttle OMS helium regulator design and development
Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included
Photoionization cross sections of rovibrational levels of the B^1ÎŁ^+_u state of H_2
We report theoretical cross sections for direct photoionization of specific rovibrational levels of the Bâ^1ÎŁ^+_u electronic state of H_2. The calculated cross sections differ considerably from values recently determined by resonant enhanced multiphoton ionization (REMPI) studies. In an attempt to understand the disagreement, we analyze in detail the REMPI dynamics and find that the multiphoton ionization probability is extremely sensitive to the spatial and temporal profiles of the laser pulses. Accurate characterization of laser profiles and their jitter is therefore necessary for a comparison between theory and experiment
(2+1) resonant enhanced multiphoton ionization of H_2 via the E, F^(1)ÎŁ^+_g state
In this paper, we report the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2+1) REMPI of H_2 via the E, F^(1)ÎŁ^+_g state, and compare these with the experimental data of Anderson et al. [Chem. Phys. Lett. 105, 22 (1984)]. These results show that the observed nonâFranckâCondon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydbergâvalence mixing in the resonant intermediate state
VLBI observations of jupiter with the initial test station of LOFAR and the nancay decametric array
AIMS: To demonstrate and test the capability of the next generation of
low-frequency radio telescopes to perform high resolution observations across
intra-continental baselines. Jupiter's strong burst emission is used to perform
broadband full signal cross-correlations on time intervals of up to hundreds of
milliseconds. METHODS: Broadband VLBI observations at about 20 MHz on a
baseline of ~50000 wavelengths were performed to achieve arcsecond angular
resolution. LOFAR's Initial Test Station (LOFAR/ITS, The Netherlands) and the
Nancay Decametric Array (NDA, France) digitize the measured electric field with
12 bit and 14 bit in a 40 MHz baseband. The fine structure in Jupiter's signal
was used for data synchronization prior to correlation on the time-series data.
RESULTS: Strong emission from Jupiter was detected during snapshots of a few
seconds and detailed features down to microsecond time-scales were identified
in dynamic spectra. Correlations of Jupiter's burst emission returned strong
fringes on 1 ms time-scales over channels as narrow as a hundred kilohertz
bandwidth. CONCLUSIONS: Long baseline interferometry is confirmed at low
frequencies, in spite of phase shifts introduced by variations in ionospheric
propagation characteristics. Phase coherence was preserved over tens to
hundreds of milliseconds with a baseline of ~700 km. No significant variation
with time was found in the correlations and an estimate for the fringe
visibility of 1, suggested that the source was not resolved. The upper limit on
the source region size of Jupiter Io-B S-bursts corresponds to an angular
resolution of ~3 arcsec. Adding remote stations to the LOFAR network at
baselines up to thousand kilometers will provide 10 times higher resolution
down to an arcsecond.Comment: 6 pages, 4 figures. Nigl, A., Zarka, P., Kuijpers, J., Falcke, H.,
Baehren, L., VLBI observations of Jupiter with the Initial Test Station of
LOFAR and the Nancay Decametric Array, A&A, 471, 1099-1104, accepted on
31/05/200
Empirical band calculations of the optical properties of d-band metals. VI. The optical conductivity of ferromagnetic iron
The optical conductivity of ferromagnetic Fe was calculated with an interpolation scheme fit to first-principles energy bands for paramagnetic Fe with a constant exchange splitting. Most of the contributions to the conductivity originate in the minority-spin bands, making the rigid splitting a valid assumption. The inclusion of electric-dipole matrix elements is essential for obtaining agreement with experiment. The locations of the transitions in the band structure were found by plotting contributions from differential volumes throughout the irreducible wedge of the Brillouin zone, including dipole matrix elements. The strong transitions around 2.5 eV occur between flat bands in large regions of the zone, regions not associated with symmetry points, lines, or planes. The transitions near 6 eV originate in a smaller volume of k space near a symmetry line, associated with an interband critical point
Basic paramodulation
We introduce a class of restrictions for the ordered paramodulation and superposition calculi (inspired by the {\em basic\/} strategy for narrowing), in which paramodulation inferences are forbidden at terms introduced by substitutions from previous inference steps. In addition we introduce restrictions based on term selection rules and redex orderings, which are general criteria for delimiting the terms which are available for inferences. These refinements are compatible with standard ordering restrictions and are complete without paramodulation into variables or using functional reflexivity axioms. We prove refutational completeness in the context of deletion rules, such as simplification by rewriting (demodulation) and subsumption, and of techniques for eliminating redundant inferences
Differential Charge Sensing and Charge Delocalization in a Tunable Double Quantum Dot
We report measurements of a tunable double quantum dot, operating in the
quantum regime, with integrated local charge sensors. The spatial resolution of
the sensors is sufficient to allow the charge distribution within the double
dot system to be resolved at fixed total charge. We use this readout scheme to
investigate charge delocalization as a function of temperature and strength of
tunnel coupling, showing that local charge sensing allows an accurate
determination of interdot tunnel coupling in the absence of transport.Comment: related papers at http://marcuslab.harvard.ed
Mid-Infrared Ethane Emission on Neptune and Uranus
We report 8- to 13-micron spectral observations of Neptune and Uranus from
the NASA Infrared Telescope Facility spanning more than a decade. The
spectroscopic data indicate a steady increase in Neptune's mean atmospheric
12-micron ethane emission from 1985 to 2003, followed by a slight decrease in
2004. The simplest explanation for the intensity variation is an increase in
stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in
2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in
2004. We also detected variation of the overall spectral structure of the
ethane band, specifically an apparent absorption structure in the central
portion of the band; this structure arises from coarse spectral sampling
coupled with a non-uniform response function within the detector elements. We
also report a probable direct detection of ethane emission on Uranus. The
deduced peak mole fraction is approximately an order of magnitude higher than
previous upper limits for Uranus. The model fit suggests an effective
temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus,
which is consistent with recent measurements indicative of seasonal variation.Comment: Accepted for publication in ApJ. 16 pages, 10 figures, 2 table
Time-Efficient Read/Write Register in Crash-prone Asynchronous Message-Passing Systems
The atomic register is certainly the most basic object of computing science.
Its implementation on top of an n-process asynchronous message-passing system
has received a lot of attention. It has been shown that t \textless{} n/2
(where t is the maximal number of processes that may crash) is a necessary and
sufficient requirement to build an atomic register on top of a crash-prone
asynchronous message-passing system. Considering such a context, this paper
visits the notion of a fast implementation of an atomic register, and presents
a new time-efficient asynchronous algorithm. Its time-efficiency is measured
according to two different underlying synchrony assumptions. Whatever this
assumption, a write operation always costs a round-trip delay, while a read
operation costs always a round-trip delay in favorable circumstances
(intuitively, when it is not concurrent with a write). When designing this
algorithm, the design spirit was to be as close as possible to the one of the
famous ABD algorithm (proposed by Attiya, Bar-Noy, and Dolev)
- âŠ