18,860 research outputs found
High-Energy Proton-Proton Forward Scattering and Derivative Analyticity Relations
We present the results of several parametrizations to two different ensemble
of data on total cross sections at the highest
center-of-mass energies (including cosmic-ray information). The results are
statistically consistent with two distinct scenarios at high energies. From one
ensemble the prediction for the LHC ( TeV) is mb and from the other, mb. From each
parametrization, and making use of derivative analyticity relations (DAR), we
determine (ratio between the forward real and imaginary parts of the
elastic scattering amplitude). A discussion on the optimization of the DAR in
terms of a free parameter is also presented.In all cases good descriptions of
the experimental data are obtained.Comment: One formula added, one unit changed, small misprints corrected, final
version to be published in Brazilian Journal of Physics; 13 pages, 8 figures,
aps-revte
Energy-dependent dipole form factor in a QCD-inspired model
We consider the effect of an energy-dependent dipole form factor in the
high-energy behavior of the forward amplitude. The connection between the
semihard parton-level dynamics and the hadron-hadron scattering is established
by an eikonal QCD-based model. Our results for the proton-proton () and
antiproton-proton () total cross sections,
, obtained using the CTEQ6L1 parton distribution
function, are consistent with the recent data from the TOTEM experiment.Comment: 7 pages, 1 figure; Contribution to Proceedings of XIIIth
International Workshop on Hadron Physics, Angra dos Reis, Brazil, 22-27
March, 201
Topological Vertex, String Amplitudes and Spectral Functions of Hyperbolic Geometry
We discuss the homological aspects of the connection between quantum string
generating function and the formal power series associated to the dimensions of
chains and homologies of suitable Lie algebras. Our analysis can be considered
as a new straightforward application of the machinery of modular forms and
spectral functions (with values in the congruence subgroup of ) to the partition functions of Lagrangian branes, refined vertex and open
string partition functions, represented by means of formal power series that
encode Lie algebra properties. The common feature in our examples lies in the
modular properties of the characters of certain representations of the
pertinent affine Lie algebras and in the role of Selberg-type spectral
functions of an hyperbolic three-geometry associated with -series in the
computation of the string amplitudes.Comment: Revised version. References added, results remain unchanged. arXiv
admin note: text overlap with arXiv:hep-th/0701156, arXiv:1105.4571,
arXiv:1206.0664 by other author
The small behavior of the gluon structure function from total cross sections
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale
we discuss how the small behavior of the gluon distribution function at
moderate is directly related to the rise of total hadronic cross
sections. In this model the rise of total cross sections is driven by
gluon-gluon semihard scattering processes, where the behavior of the small
gluon distribution function exhibits the power law . Assuming that the scale is proportional to the
dynamical gluon mass one, we show that the values of obtained in this
model are compatible with an earlier result based on a specific nonperturbative
Pomeron model. We discuss the implications of this picture for the behavior of
input valence-like gluon distributions at low resolution scales.Comment: 19 pages, 3 figures; revised version; to appear in Int. J. Mod. Phys.
A conjecture on the infrared structure of the vacuum Schrodinger wave functional of QCD
The Schrodinger wave functional for the d=3+1 SU(N) vacuum is a partition
function constructed in d=4; the exponent 2S in the square of the wave
functional plays the role of a d=3 Euclidean action. We start from a
gauge-invariant conjecture for the infrared-dominant part of S, based on
dynamical generation of a gluon mass M in d=4. We argue that the exact leading
term, of O(M), in an expansion of S in inverse powers of M is a d=3
gauge-invariant mass term (gauged non-linear sigma model); the next leading
term, of O(1/M), is a conventional Yang-Mills action. The d=3 action that is
the sum of these two terms has center vortices as classical solutions. The d=3
gluon mass, which we constrain to be the same as M, and d=3 coupling are
related through the conjecture to the d=4 coupling strength, but at the same
time the dimensionless ratio in d=3 of mass to coupling squared can be
estimated from d=3 dynamics. This allows us to estimate the QCD coupling
in terms of this strictly d=3 ratio; we find a value of about
0.4, in good agreement with an earlier theoretical value but a little low
compared to QCD phenomenology. The wave functional for d=2+1 QCD has an
exponent that is a d=2 infrared-effective action having both the
gauge-invariant mass term and the field strength squared term, and so differs
from the conventional QCD action in two dimensions, which has no mass term.
This conventional d=2 QCD would lead in d=3 to confinement of all color-group
representations. But with the mass term (again leading to center vortices),
N-ality = 0 mod N representations are not confined.Comment: 15 pages, no figures, revtex
Using green vaccination to brighten the agronomic future
Crop plants host a variety of pests and diseases that can ultimately reduce agricultural productivity. Current methods of pest and disease control depend largely on pesticides. However, the use of chemicals alone is increasingly regarded as unsustainable due to the development of resistance and the introduction of stricter European regulation. There is a need, therefore, to reduce their use and to pursue the development of new Integrated Pest (and disease) Management (IPM) strategies. Research that focuses on the role that the plant’s immune system can play against these biological threats provides another potential source for future IPM strategies. Plants have sophisticated ways to defend themselves effectively and some stimuli can augment their innate immune capacity to resist future diseases. This phenomenon is known as priming of defence. Studies, mainly in the model plant Arabidopsis thaliana, have unravelled the molecular and physiological mechanisms of this apparent plant ‘vaccination’. This article describes recent findings and provides the ingredients for the “right formulation” in order to integrate green vaccination as a tool for the second green revolution
- …
