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Abstract We discuss the homological aspects of the con-
nection between quantum string generating function and the
formal power series associated to the dimensions of chains
and homologies of suitable Lie algebras. Our analysis can
be considered as a new straightforward application of the
machinery of modular forms and spectral functions (with
values in the congruence subgroup of SL(2,Z)) to the parti-
tion functions of Lagrangian branes, refined vertex and open
string partition functions, represented by means of formal
power series that encode Lie algebra properties. The com-
mon feature in our examples lies in the modular properties
of the characters of certain representations of the pertinent
affine Lie algebras and in the role of Selberg-type spectral
functions of a hyperbolic three-geometry associated with q-
series in the computation of the string amplitudes.

1 Introduction

In this work, we deal with some applications of the modular
forms (and spectral functions related to the congruence sub-
group of SL(2,Z)) to topological vertex and string generat-
ing functions. For mathematicians topological vertices (and
their respective string generating functions) may be associ-
ated to new mathematical invariants for spaces, while, for
physicists, they are related to quantum string partition func-
tions.

Having made these general remarks, let us now explain the
connection between the specific contents of the various sec-
tions in more detail. In Sect. 2 we will explore a remarkable
connection between Poincaré polynomials (generating func-
tions) and formal power series associated with dimensions of
chains and homologies of Lie algebras (Euler–Poincaré for-
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mula). From a concrete point of view this paper consists of
applications of spectral functions to quantum string partition
functions connected to suitable Lie algebras.

We show that the Poincaré polynomials (Sect. 3) and the
associated topological vertex and string amplitude can be
converted into product expressions which inherit cohomo-
logical properties (in the sense of characteristic classes of
foliations [1]) of appropriate polygraded Lie algebras.

The final result for a single Lagrangian brane, stack of
branes (Sect. 4), refined vertex, and the partition functions for
the case of Calabi–Yau threefolds O(−1) ⊕ O(−1) �→ P

1

and O(0) ⊕ O(−2) �→ P
1 (Sect. 5) is written in terms of

spectral functions of the hyperbolic three-geometry associ-
ated with q-series.

2 Graded algebras and spectral functions of hyperbolic
geometry

Before considering topological vertex and string amplitudes
we would like to spend some time on the relation between
formal power q-series and homologies of Lie algebras. We
would like to show how combinatorial identities could be
derived from the initial complex of (graded) Lie algebras.
Our interest is the Euler–Poincaré formula associated with a
complex consisting of linear spaces. The relations between
Lie algebras and combinatorial identities was first discov-
ered by Macdonald; the Euler–Poincaré formula is useful for
combinatorial identities known as Macdonald identities. The
Macdonald identities are related to Lie algebras in one way
or another and can be associated with generating functions
in quantum theory.

Let g be a Lie algebra, and assume that it has a grad-
ing, i.e. g is a direct sum of homogeneous components g(λ),
where the λ’s are elements of an abelian group, [g(λ), g(μ)] ⊂
g(λ+μ). Let us consider a module k over g, or g-module,
which is a left module over the universal enveloping algebra
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U (g) of g. Let Cn(g;k) be the space of an n-dimensional
cochain of the algebra g, with coefficients in k. d = dn :
Cn(g;k)→ Cn+1(g;k) as dn+1 ◦ dn = 0, for all n, the set
C�(g;k) ≡ {Cn(g;k), dn} is an algebraic complex, while
the corresponding cohomology Hn(g;k) is referred to as the
cohomology of the algebra g with coefficients in k.

Let Cn(g;k) be the space of n-dimensional chains of the
Lie algebra g and δ = δn : Cn(g;k) → Cn−1(g;k). The
homology Hn(g;k) of the complex {Cn(g;k), δn} is referred
to as the homology of the algebra g. We get d(Cn

(λ)(g;k)) ⊂
Cn+1
(λ) (g;k) and δ(C (λ)

n (g;k)) ⊂ C (λ)
n−1(g;k) and both

spaces acquire gradings. The chain complex C�(g), g =
⊕∞λ=1g(λ), dim g(λ) <∞, can be decomposed as

0←− C (λ)
0 (g)←− C (λ)

1 (g) · · · ←− C (λ)
N (g)←− 0 (2.1)

The well-known Euler–Poincaré formula reads

∑

m

(−1)mdim C (λ)
m (g) =

∑

m

(−1)mdim H (λ)
m (g). (2.2)

As a consequence, we can introduce the q variable and rewrite
the identity (2.2) as a formal power series [2,3]:
∑

m,λ

(−1)mqλdim C (λ)
m (g) =

∑

m,λ

(−1)mqλdim H (λ)
m (g)

=
∏

n

(1− qn)dim gn . (2.3)

2.1 Spectral generating functions for string amplitudes

Having given the general scheme let us now produce, for
the benefit of the reader, the specific correspondence of the
Poincaré series (which can be associated with a conformal
structure in two dimensions [4]) and spectral functions of
the three-dimensional hyperbolic geometry. Thus, the infinite
product identities are [1,3,5]:

∞∏

n=�
(1− qμn+ε) =

∏

p=0,1

Z�((μ�+ ε)(1− i�(τ))+ 1− μ︸ ︷︷ ︸
s

+ μ(1+ i�(τ)p)(−1)p

= R(s = (μ�+ ε)(1− i�(τ))+ 1− μ), (2.4)
∞∏

n=�
(1+ qμn+ε)

=
∏

p=0,1

Z�((μ�+ ε)(1− i�(τ))+ 1− μ+ i/(2 Im τ)︸ ︷︷ ︸
s

+ μ(1+ i�(τ)p))(−1)p

= R(s=(μ�+ε)(1− i�(τ))+ 1− μ+ i/(2 Im τ)),

(2.5)

where q = exp(2π iτ), �(τ ) = Reτ/Imτ, μ ∈ R, � ∈ Z+
and ε ∈ C. The Ruelle function R(s) is an alternating product
of more complicated factors, each of which is a Selberg-type
spectral function Z�(s) (the reader can find the analytic and
modular properties of the Patterson–Selberg spectral func-
tion Z�(s) in [1]).

At this point one can use the Ruelle functions R(s) to
naturally generalize the result (2.4), (2.5) for more general
infinite product identities

∞∏

n=m

(
1− qμ n+ε)ν n

= R(
s = (μm + ε) (1− i�(τ))+ 1− μ)ν m

×
∞∏

n=m+1

R(
s = (μ n+ε) (1− i�(τ))+ 1− μ)ν

, (2.6)

∞∏

n=m

(
1+ qμ n+ε)ν n

= R(
s = (μm+ε) (1− i�(τ))+1− μ+i/(2 Im τ)

)ν m

×
∞∏

n=m+1

R(
s = (μ n + ε) (1− i�(τ))

+1− μ+ i/(2 Im τ)
)ν
. (2.7)

3 Polygraded algebras and polynomial invariants

Let g be a polygraded Lie algebra, g = ⊕
λ1≥0,...,λk≥0
λ1+···+λk>0

g(λ1,...,λk ), satisfying the condition dim g(λ1,...,λk ) <∞. For
formal power series in q1, . . . , qk , we have the following
identity:

∑

m,λ1,...,λk

(−1)mqλ1
1 · · · qλk

k H (λ1,...,λk )
m

=
∏

n1,...,nk

(
1− qn1

1 · · · qnk
k

)dim gn1,...,nk . (3.1)

We would like to stress that partition functions can indeed
be converted into product expressions. The expression on the
right-hand side of (3.1) looks like counting the states in the
Hilbert space of a second quantized theory.

For more examples let us proceed to describing the proper-
ties of link homologies suggested by their relation to Hilbert
spaces of BPS states [6]. Let Hsl(N );R1,...,R�

k, j (L) be the doubly
graded homology theory whose graded Euler characteristic
is the polynomial invariant Psl(N );R1,...,R� (q) (the bar means
that this invariant is unnormalized invariant; its normalized
version obtained by dividing by the invariant of the unknot)
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Psl(N );R1,...,R� (q) =
∑

k, j∈Z
(−1) j qk dim Hsl(N );R1,...,R�

k, j (L).

(3.2)

Here L is an oriented link in S3; we consider the Lie alge-
bra g = sl(N ) (there is a natural generalization to the other
classical Lie algebras B, C, and D [6]) and a colored link is
given by a collection of representations R1, . . . , R� of sl(N ).
In order to agree with the standard notations we use the vari-
ables {q, t}, [7], when we discuss link homologies.

The graded Poincaré polynomial has the form [6]

Psl(N );R1,...,R� (q, t) :=
∑

k, j∈Z
qkt j dim Hsl(N );R1,...,R�

k, j (L).

(3.3)

By definition, it is a polynomial in q±1 and t±1 with integer
non-negative coefficients. In addition, evaluating (3.3) at t =
−1 gives (3.2). In the case Ra = � for all a = 1, . . . , �, the
homology Hsl(N );R1,...,R�

k, j (L) is known as the Khovanov–

Rozansky homology, (K R)H
N
k, j (L), and its graded Poincaré

polynomial takes the form

Psl(N );�,...,�(q, t) =
∑

k, j∈Z
qkt j dim (K R)H

N
k, j (L). (3.4)

In order to get this expression in its final form the homology

(K R)H
N
k, j (L) has to be computed. The further physical inter-

pretation of homological link invariants via Hilbert spaces of
BPS states leads to certain predictions regarding the behav-
ior of link homologies with rank N (for more discussion see
[6,8]).

4 A single Lagrangian brane

Let us recall the connection between topological vertex and
open string amplitudes in the presence of a stack of branes. It
is known that in the case of a stack of Lagrangian D-branes
end on one of the legs of the C

3 (in this section and later on
we will mostly follow [9] in the notations and reproduction
of necessary results). The partition function is given by

F(q; V ) =
∑

ν

C∅∅ ν(q−1)TrνV . (4.1)

Here TrνV = sν(x) are the Schur functions, x = {x1, x2, . . .}
are the eigenvalues of the holonomy matrix V , and Cλμν(q)
is the topological vertex [10]. It is well known that the topo-
logical vertex has a combinatorial interpretation in terms of
counting certain 3D partitions with fixed asymptotes [11].
Recall that Schur functions have the property that sν/λ(Q) =
Q|ν|−|λ|, ν  λ, and sν/λ(Q) = 0, otherwise.

For a single Lagrangian brane x = (−Q, 0, 0, 0, . . .) we
get the well-known partition function

F(q; Q) =
∞∏

n=1

(1− Q q−n+ 1
2 )

by Eq. (2.4)======

×R(s = (α − 1/2)(1− i�(τ))+ 2). (4.2)

In order proceed carefully and to agree with the standard
notations, we use the variables {Q, q, t} when we talk about
topological string amplitudes computed by the topological
vertex, cf. [9]. This set of variables are related with our nota-
tions {Qα, q = exp(2π iτ), t = exp(2π iσ)} as follows:
τ = F1/2π i, σ = F2/F1, where we turn on a constant
not self-dual graviphoton field strength F = F1dx1∧ dx2+
F2dx3 ∧ dx4, and α = − ∫

C ω/F1 [9].
The above partition function of a single Lagrangian brane

can be interpreted in terms of the Hilbert series of the sym-
metric product of C. Indeed, sν(Q) is non-zero only for those
partitions for which �(ν) = 1. These are exactly the parti-
tions which label the fixed points of the symmetric product of
C, i.e., Sym•(C) has a single fixed point labeled by the par-
tition ν = (•, 0, 0, . . .). A generating function of the Hilbert
series of the symmetric product is [12]

G(ψ, q) :=
∞∑

k=0

ψk H [Symk(C)](q). (4.3)

In order to determine H [Symk(C)](q) note that the Rk is the
ring of symmetric functions in the variables {z1, z2, . . . , zk}
and therefore the Schur functions provide a basis of Rk ,
Rk = 〈sν(z1, . . . , zk)|�(ν) ≤ k〉. The condition �(ν) ≤ k
is necessary since sν(z1, . . . , zk) = 0 for �(ν) > k. Rk is
isomorphic to the Hilbert space Hk , generated by a bosonic
oscillator up to charge k. The Hilbert spaces {Hk}∞k=0 form
a nested sequence H0 ⊂ H1 ⊂ H2 ⊂ H3 ⊂ · · · , which
corresponds to the nested sequence of Young diagrams of
increasing number of rows.

The C
× action (on C q acts as a C

× action z �→ qz)
becomes the action of q L0 on the states in H (L0 =∑

n>0 α−nαn). It lifts to an action on the Sym•(C) such that
the Schur functions sν(z1, . . . , zk) are eigenfunctions with
eigenvalue q |ν|. We have

H [Rk](q) = TrHk q L0 =
∑

ν|�(ν)≤k

q |ν| =
k∏

n=1

(1− qn)−1

= s(k)(1, q, q2, . . .)

=
[ R(s = 1− i�(τ))

R(s = (k + 1)(1− i�(τ)))

]−1

. (4.4)

Note that the Hilbert series of Rk in this case turns out to be
the generating function of the number of partitions with at
most k parts. Thus the generating function G(ψ, q) is then
given by
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G(ψ, q) =
∞∑

k=0

ψk H [Rk](q) =
∞∑

k=0

ψkTrHk q L0

=
∞∑

k=0

ψks(k)(1, q, q2, . . .)

=
∞∑

k=0

s(k)(ψ)s(k)(1, q, q2, . . .)

=
∑

ν

sν(ψ)sν(1, q, q2, . . .)

=
∑

ν

sν(q
−ρ)sν(ψ q−

1
2 )

=
∑

ν

sνt (qρ) sν(−q−
1
2ψ)

=
∑

ν

C∅∅ ν(q−1)TrνV = F(q; Q). (4.5)

Here TrνV = sν(Q) and Q = q− 1
2ψ . TrνV = sν(x) where

x = {x1, x2, . . .} are the eigenvalues of the holonomy matrix
V . Thus the partition function takes the form

F(q; V ) =
∑

ν

C∅∅ ν(q−1) sν(x) =
∑

ν

sνt (qρ)sν(x)

=
∞∏

k, j=1

(1+ q−k+ 1
2 x j )

by Eq. (2.5)======
∞∏

j=1

R(s = (a j − 1/2)(1− i�(τ))+ 2

+i/(2Imτ)), (4.6)

where a j ≡ log x j/log q. If we move the brane to infinity

(Q = e−
∫

C ω �→ 0) the contribution of the higher modes is
suppressed. On the other hand as the brane moves toward the
origin (Q �→ 1) higher oscillator modes start contributing
with equal weight to the partition function. It also follows
that the topological vertex C∅∅ (k)(q) has an interpretation
as counting the number of states of a given energy in the
Hilbert space Hk . It is tempting to conjecture that the topo-
logical vertex with all three partitions non-trivial has a similar
interpretation in terms of spectral functions.

4.1 Stack of branes

Let us consider the case of multiple Lagrangian branes on
one of the legs of C

3. Then x = {x1, x2, . . . , xN }, and the
partition function becomes

F(x, q) =
∑

ν

C∅∅ ν(q−1) sν(x) =
N∏

j=1

∞∏

k=1

(1+ q−k+ 1
2 x j )

=
N∏

j=1

R(s = (a j − 1/2)(1− i�(τ))

+ 2+ i/(2Imτ)). (4.7)

It is clear that the partition function (4.7) is the generating
function of the Hilbert series of a product of symmetric prod-
ucts of C.

5 Topological vertex and string amplitudes

5.1 Refined vertex and open string partition function

In this section we will explain the (combinatorial) interpreta-
tion of the vertex in terms of 3D partitions. The refined vertex
has an interpretation in terms of generalized open topological
string amplitudes in the presence of stacks of A-brane. This
vertex can be viewed as a building block for the computation
of Khovanov knot invariants that can be obtained from local
toric Calabi–Yau manifolds. The stack of D-branes in the
context of refined vertex can also be related to the symmetric
product of C, as it was possible in the context of ordinary ver-
tex. The refined topological vertex also has a combinatorial
interpretation in terms of 3D partitions [9].

Note that the open string partition function depends
on the leg on which the stack of branes is put. Essen-
tially we have three choices for the open string parti-
tion function, corresponding to the three legs of C

3 [9]:
(1) Cλ∅∅(t, q) = (q/t)|λ|/2 sλt (t−ρ) ; (2) C∅μ∅(t, q) =
(q/t)(||μt ||2−|μ|)/2 sμt (q−ρ) ; (3) C∅∅ ν(t, q) = q ||ν||2/2/∏

s∈ν(1− t1+a(s) q�(s)).
In the first two cases the partition function is the same

as the partition function obtained from the ordinary vertex
except that the partition function depends on either t or q,
depending on the leg on which the brane ends. The third case
is more interesting, the brane can end on the preferred leg.
In the case x = {−Q, 0, 0, . . .} the open string amplitude is
given by

F(Q, t, q) =
∑

ν

C∅∅ ν(t−1, q−1) sν(−Q)

=
∞∑

k=0

C∅∅ (k)(t−1, q−1)(−Q)k

=
∞∑

k=0

(
Q

t√
k

)k k∏

n=1

(1− t qn−1)−1

t := qσ====
∞∑

k=0

(
Q

qσ√
k

)k

×
[R(s = (σ − 1)(1− i�(τ)))

R(s = (k + σ)(1− i�(τ)))

]−1

. (5.1)

The above partition function can also be written using a more
refined Hilbert series of the symmetric product of C.
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5.2 The case of the Calabi–Yau threefold

We have X = O(−1) ⊕ O(−1) �→ P
1. As before one can

use the refined topological vertex to determine the gener-
alized partition function for various local toric Calabi–Yau
threefolds. The compactification of Type IIA string theory
on the X �→ P

1 gives rise to U (1) N = 2 gauge theory on
the transverse C

2 in a particular limit [13]. The topological
string partition function is given by

F(q, Q) =
∑

ν

Q|ν|(−1)|ν| C∅∅ ν(q)C∅∅ νt (q)

=
∑

ν

Q|ν|(−1)|ν|sνt (q−ρ)sν(q−ρ)

=
∞∏

k, j=1

(
1− Q qk+ j−1

)
=
∞∏

n=1

(
1− qn Q

)n

by Eq. (2.6)======
∞∏

n=1

R(s = (n + α)(1− i�(τ))). (5.2)

Here −log Q = ∫
C ω is the Kähler parameter, the size of

the P
1. Thus the refined topological vertex can be used to

determine the refined partition function. The other choice of
the refined partition function is

F(t, q, Q) =
∑

λ

Q|λ|(−1)|λ| Cλ∅∅(t, q)Cλt ∅∅(q, t)

=
∑

λ

(−Q)|λ|
(

q
t

) |λ|
2

sλt (t−ρ)
(

t
q

) |λ|
2

sλ(q
−ρ)

=
∑

λ

(−Q)|λ|sλt (t−ρ) sλ(q
−ρ)

=
∞∏

k, j=1

(1− Q qk− 1
2 t j− 1

2 )

=
∞∏

j=1

R(s = (α + σ( j − 1/2)− 1/2)

×(1− i�(τ))). (5.3)

5.3 The case of the Calabi–Yau threefold

We have X = O(0) ⊕ O(−2) �→ P
1. One can obtain this

geometry from local P
1×P

1 by taking the size of one of the
P

1 very large and get two copies of O(0)⊕O(−2) �→ P
1.

In the topological vertex formalism the partition functions
take the form

F(q, Q)=
∑

ν

Q|ν|(−1)|ν|C∅∅ ν(q) (−1)|ν| q
κ(ν)

2 C∅∅ νt (q)

=
∑

ν

Q|ν|sνt (q−ρ) q
κ(ν)

2 sν(q
−ρ)

=
∑

ν

Q|ν|sνt (q−ρ) sνt (q−ρ)

=
∞∏

k, j=1

(
1− Q qk+ j−1

)−1 =
∞∏

n=1

(
1− Q qn

)−n

=
∞∏

n=1

[R(s = (n + α)(1− i�(τ)))
]−1

. (5.4)

F(t, q, Q)=
∑

λ

Q|λ|(−1)|λ|C∅ λ∅(t, q) fλ(t, q)Cλt ∅∅(t, q)

=
∑

λ

(−Q)|λ|
(q

t

) ||λ||2
2

t
κ(λ)

2 sλt (q−ρ) fλ(t, q) sλ(t
−ρ)

=
∑

λ

(Q
√

q
t )
|λ| sλt (t−ρ) sλt (q−ρ)

=
∞∏

k, j=1

(
1− Q qk t j−1

)−1

=
∞∏

j=1

[R(s = (1+ α + σ( j − 1))(1− i�(τ)))
]−1

.

(5.5)

6 Conclusions

The main result and the central concept in all examples here
are that the quantum generating functions considered in this
paper can be converted into products of spectral functions
associated with q-series. This common feature encodes the
connection with infinite-dimensional Lie algebras and their
homologies, together with the remarkable link to hyperbolic
geometry. The Poincaré polynomials and the associated topo-
logical vertices and string amplitudes can be converted into
product expressions which inherit modular and homological
properties (in the sense of characteristic classes of foliations,
as has been stressed for the first time in [1]) of appropriate
polygraded algebras.
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