611 research outputs found

    Observable and hidden singular features of large fluctuations in nonequilibrium systems

    Full text link
    We study local features, and provide a topological insight into the global structure of the probability density distribution and of the pattern of the optimal paths for large rare fluctuations away from a stable state. In contrast to extremal paths in quantum mechanics, the optimal paths do {\it not} encounter caustics. We show how this occurs, and what, instead of caustics, are the experimentally observable singularities of the pattern. We reveal the possibility for a caustic and a switching line to start at a saddle point, and discuss the consequences.Comment: 10 pages, 3 ps figures by request, LaTeX Article Format (In press, Phys. Lett. A

    A procedural development for the analysis of <sup>56/54</sup>Fe and <sup>57/54</sup>Fe isotope ratios with new generation IsoProbe MC-ICP-MS

    Get PDF
    We have developed a procedure for iron isotope analysis using a hexapole collision cell MC-ICP-MS which is capable of Fe isotope ratio analysis using two different extraction modes. Matrix effects were minimised and the signal-to-background ratio was maximised using high-concentration samples (~ 5ÎŒg Fe) and introducing 1.8 mL/min&lt;sup&gt;-1&lt;/sup&gt; Ar and 2 mL/min H&lt;sub&gt;2&lt;/sub&gt; into the collision cell to decrease polyatomic interferences. The use of large intensity on the faraday cups considerably decreases the internal error of the ratios and ultimately, improves the external precision of a run. Standard bracketing correction for mass bias was possible when using hard extraction. Mass bias in soft extraction mode seems to show temporal instability that makes the standard bracketing inappropriate. The hexapole rf amplitude was decreased to 50 % to further decrease polyatomic interferences and promote the transmission of iron range masses. We routinely measure Fe isotopes with a precision of ± 0.05 ‰ and ± 0.12 ‰ (2σ) for ÎŽ&lt;sup&gt;56&lt;/sup&gt;Fe and ÎŽ&lt;sup&gt;57&lt;/sup&gt;Fe respectively

    Comparing novelty of designs from biological-inspiration with those from brainstorming

    Get PDF
    This research aims to understand the significance of biological-analogies in fostering novelty by comparing biological-analogies with other design methods for idea generation. Among other design methods, brainstorming was chosen here as benchmark. Four studies were conducted to compare: (i) the levels of abstraction at which concepts were ideated using biological inspiration (represented using biocards) with that using traditional brainstorming; and (ii) the novelty of concepts produced by using these two design methods. Concepts produced in these studies were evaluated for levels of abstraction at which they were ideated, average novelty, and proportion of high-novelty concepts. Results suggest that concepts generated using biocards were ideated at higher abstraction levels than those using brainstorming, but neither were at the highest abstraction levels. The average novelty of concepts produced using biocards was found to be greater than that using brainstorming; however, no statistically significant difference was found in the proportion of high-novelty concepts. We suspect the lack of biological knowledge and cultural difference among the subjects involved in our studies as the two reasons behind the results. The results demonstrate that the design methods substantially influence the novelty of concepts generated, while indicating the need for better training in effective use of biological-analogies

    Landau-Ginzburg Description of Boundary Critical Phenomena in Two Dimensions

    Full text link
    The Virasoro minimal models with boundary are described in the Landau-Ginzburg theory by introducing a boundary potential, function of the boundary field value. The ground state field configurations become non-trivial and are found to obey the soliton equations. The conformal invariant boundary conditions are characterized by the reparametrization-invariant data of the boundary potential, that are the number and degeneracies of the stationary points. The boundary renormalization group flows are obtained by varying the boundary potential while keeping the bulk critical: they satisfy new selection rules and correspond to real deformations of the Arnold simple singularities of A_k type. The description of conformal boundary conditions in terms of boundary potential and associated ground state solitons is extended to the N=2 supersymmetric case, finding agreement with the analysis of A-type boundaries by Hori, Iqbal and Vafa.Comment: 42 pages, 13 figure

    A comparative study of synthetic winged peptides for absolute protein quantification

    Get PDF
    A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged peptide for absolute quantification is missing. In this study, we used human serum albumin as a model system to compare the quantitative performance of reference SIL protein with four different designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, (iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal quantitative performance, equivalent to the SIL protein

    Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research

    Get PDF
    During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure–function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO2-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture

    Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation

    Get PDF
    This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–Δ, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator
    • 

    corecore