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A comparative study of synthetic 
winged peptides for absolute 
protein quantification
Eliska Benesova, Veronika Vidova & Zdenek Spacil*

A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-
based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the 
gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL 
peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence 
or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged 
peptide for absolute quantification is missing. In this study, we used human serum albumin as a 
model system to compare the quantitative performance of reference SIL protein with four different 
designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin 
cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, 
(iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. 
Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility 
and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL 
winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal 
quantitative performance, equivalent to the SIL protein.

The advent of mass spectrometry-based proteomics allowed for accurate quantification of a panel of target 
proteins1 in complex biological samples with high selectivity, sensitivity, and multiplexing capacity2,3. A typical 
"bottom-up" workflow applies enzymatic proteolysis to generate tryptic peptides as surrogates of target proteins4. 
Proteotypic peptides are quantified using liquid chromatography (LC) or ultra-high performance LC (UHPLC) 
separation techniques coupled with mass spectrometry (MS) in selected reaction monitoring (SRM) detection 
mode5.

Absolute quantification of a target protein by MS technique requires an internal standard, typically a synthetic 
isotopically labeled (SIL) proteotypic peptide or a recombinant protein6. SIL analogs of surrogate peptides ("heavy 
peptides") are added to a sample in a known concentration and used to calculate the concentration of analyte 
("light peptide") in the sample from the light-to-heavy ratio. SIL peptide selection or protein selection is critical 
for robust, accurate, and precise protein assay1,7. SIL proteins are considered the gold standard with reportedly 
optimal quantification performance1. SIL protein properties are identical with the corresponding target protein 
and efficiently mitigate the inherent variance, particularly the incomplete enzymatic proteolysis. However, the 
availability of recombinant SIL proteins is limited.

On the other hand, SIL analogs of tryptic proteotypic peptides are readily available. Tryptic SIL peptides are 
typically added to a sample after enzymatic digestion to correct for biases associated with solid-phase extrac-
tion (SPE) (i.e., peptide recovery) and LC–MS analysis (i.e., ionization efficiency, relative response, and matrix 
effects)1,8. The internal standardization with tryptic SIL peptides fails to normalize for the enzymatic digestion 
variance, the major contributor to the irreproducibility in a "bottom-up" proteomics protocol9–11. On the other 
hand, tryptic SIL peptides extended at the C-terminus or both C- and N-termini with the natural sequence of 
amino acids corresponding to a target protein or artificial trypsin cleavable tag (TCT) efficiently normalize 
the variability in proteolysis. Literature refers to extended peptides as "winged," "elongated," or "cleavable" and 
describes a varied length of extension (i.e., 2–7 amino acids) positioned solely at C-terminus or both C- and 
N-termini3,12–21. Studies only focusing on N-terminal extended peptides are not available.

Studies focused on SIL proteins’ quantitative performance relative to tryptic SIL, and SIL-extended (SIL-Ex) 
peptides report ambiguous and controversial results. Some did not observe SIL-Ex peptides’ advantages over 
tryptic SIL peptides regarding the precision and accuracy of a protein assay3,22. Others reported improved quan-
titative performance of SIL-Ex peptides in comparison to tryptic SIL peptides11,13. However, a comprehensive 
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comparison of SIL-Ex peptides, tryptic SIL peptides, and SIL protein quantitative performance was not per-
formed. For instance, Scott et al. compared SIL extended peptides with two, four, and six amino acids at both 
C- and N-termini and attributed the superior quantitative performance to six amino acid extension11. However, 
the influence of the sequence extension position (C- or N-terminus) requires further investigation as the body 
of published studies is limited.

In this study, we elucidate the influence of the length and position of a sequence extension on quantitative 
performance in the human serum albumin (HSA) model system. Our results demonstrate the dependence of 
enzymatic digestion efficiency, solubility, and quantitative performance on the sequence extension design. We 
tested the quantitative performance of (i) commercially available SIL-TCT peptides extended with a tetrapeptide 
(serine-alanine-nitrotyrosine-glycine) tag at C-terminus, (ii) SIL-Ex peptides with five amino acids at C-terminus 
(SIL-ExC5), (iii) SIL-Ex with three amino acids at both C- and N-termini (SIL-ExC3N3), and (iv) SIL-Ex with 
five amino acids at both C- and N-termini (SIL-ExC5N5) corresponding to target protein sequence (Fig. 1). 
We compared SIL-TCT and SIL-Ex peptides’ quantitative performance to a gold standard SIL-HSA protein as 
a reference method.

Methods
Chemicals and solvents.  Formic acid (FA) for mass spectrometry (cat. #94318), sodium deoxycholate 
(SDC) BioXtra ≥ 98.0% (cat. #30970), ammonium bicarbonate (AmBic) BioUltra ≥ 99.5% (cat. #09830), and 
iodoacetamide (IAA) ≥ 99.0% (cat. #I6125) were all purchased from Sigma Aldrich (St. Louis, MO); 1,4-dithi-
othreitol (DTT) ≥ 99.0% (cat. #6908, Carl Roth, Karlsruhe, Germany); Trypsin Gold, Mass spectrometry grade 
(cat. #V5280, Promega, Madison, WI); LC–MS grade acetonitrile (ACN, cat. #1207802BS, Biosolve, Valken-
swaard, The Netherlands). Water was produced using Millipore Simplicity 185 ultrapure water system (Merck 
Millipore corp. Billerica, MA).

Synthetic isotopically labeled peptides and recombinant HSA protein.  SIL peptides with C-ter-
minal arginine (R*, 13C6H14O2

15N4) or lysine (K*, 13C6H14O2
15N2) extended with (i) a tetrapeptide SAnYG tag 

(SpikeTides_TQL™), (ii) five amino acids at C-terminal R*/K* (SIL-ExC5), (iii) three amino acids at both C- and 
N-termini (SIL-ExC3N3) or iv) five amino acids at both C- and N-termini with (SIL-ExC5N5) were custom-
ordered from JPT Technologies (Berlin, Germany). SIL peptides were synthesized with alkylated cysteines. 
Sequences of SIL-Ex peptides, molecular weights, and quantifier transitions are shown in Table S1. The purity 
of all peptides (> 95%) was determined using RP-HPLC–UV (220 nm, C18, linear gradient) and the absolute 
concentration by amino acid analysis. Each peptide acronyms include the sequence of the first four N-terminal 

Figure 1.   Signature proteotypic peptides are marked in bold, a peptide position in the HSA protein sequence in 
brackets. Compared types of SIL-Ex peptides are shown in different colors: SIL-TCT (blue), SIL-ExC5 (orange), 
SIL-ExC3N3 (green), SIL-ExC5N5 (purple). SIL-ExC5, SIL-ExC3N3, and SIL-ExC5N5 denote signature 
peptides extended with the natural sequence of amino acids corresponding to the target protein sequence. SIL-
TCT represent signature peptides extended with a tetrapeptide (SAnYG, nY = nitrotyrosine) tag.
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amino acids. The recombinant SIL-HSA protein (> 98%, cat. #MSST0011, Sigma Aldrich) was reconstituted in 
5% ACN to prepare a stock solution (500 nM).

Human serum samples.  Individual human serum samples were collected during a one-time morning ses-
sion from 14 healthy adult volunteers (seven women and seven men). Venous blood collected into 9 mL serum 
tubes was allowed to clot and centrifuged (10 min, 2500×g, 20 °C). Individual serum samples were pooled and 
stored at − 20 °C until analysis. Signed informed consent forms were obtained from all participants and archived. 
The study was approved by the Committee for Ethics of CELSPAC: TNG (CELSPAC/EK/4/2016) at University 
Hospital Brno, Czech Republic, under the Declaration of Helsinki. The methods used in the study and described 
below were carried out following the relevant guidelines and regulations. The authors confirm that the data sup-
porting the findings of this study are available within the article and in supplementary materials.

In‑solution proteolysis by trypsin.  HSA concentration in the pooled serum sample diluted twofold 
with ultrapure water was determined using BCG albumin assay kit on the 96-well plate format (cat. #MAK124-
1KT, Sigma-Aldrich). The seven-point calibration series was prepared using HSA standard (5 to 50 mg/mL) in 
ultrapure water. The absorption spectrophotometry was measured at 620 nm wavelength. The pooled serum 
sample (10 µL), diluted 2000-fold using 50 mM AmBic with 5 mg/mL SDC (AmBic/SDC buffer) to HSA con-
centration of approx. 500 nM and transferred into a clean microcentrifuge tube. After adding SIL protein or 
peptide internal standard (10 µL), the sample was reduced (adding 1 µL of 200 mM DTT stock solution, 95 °C, 
10 min), cooled down to ambient temperature, and cysteine residues were alkylated (adding 1 µL of 400 mM 
IAAstock solution, ambient temperature, 30 min in the dark). Trypsin was added to the sample in a 1:20 ratio 
(w/w enzyme to total protein content), and samples were incubated (37  °C, 16  h) in microcentrifuge tubes 
sealed with a paraffin film. The enzymatic proteolysis was quenched at different time points (0.5, 2, 4, 8, 16, and 
24 h; n = 3) to optimize the incubation time. The proteolysis was quenched by adding 200 µL of 2% FA in water 
(pH < 3), and tryptic peptides were desalted using a mixed-mode SPE cartridge in a 96-well plate format (Oasis 
PRIME HLB, Waters, Milford, MA). Samples were loaded onto the SPE cartridge, washed (300 µL water with 
2% FA, pH < 3), eluted (50% ACN; 2% FA in water, pH < 3), and the extract was dried in a vacuum concentrator 
centrifuge (Savant SPD121 P SpeedVac, Thermo Fisher). Samples were dissolved (10 µL) in 5% ACN with 0.1% 
FA in water before UHPLC-SRM analysis.

Liquid chromatography and mass spectrometry protein assays.  Samples were analyzed using the 
UHPLC system (Infinity™ 1260 Agilent Technologies, Santa Clara, CA) and a reversed-phase analytical column 
(C18 Peptide CSH; 1.7  µm, 2.1  mm i.d. × 100  mm; cat. #186006937; Waters; Milford, MA). The column and 
the autosampler temperatures were 40 °C and 8  °C, respectively, and the sample injection volume was 3 µL. 
The mobile phase flow rate was 0.3 mL/min using mobile phase A (0.1% FA in water) and B (0.1% FA in 95% 
ACN) in the linear gradient elution mode (0–15 min) with a wash step (15.30–20 min) and re-equilibration step 
(21–25 min). The gradient program was: 0.0 min 5% B; 15 min 20% B; 15.3 min 95% B; 20 min 95% B; 21 min 
5% B; 25 min 5% B. A triple quadrupole mass spectrometer (6495B, Agilent Technologies, USA) was used for 
SRM assays in positive ion mode. A standard-flow Jet Stream electrospray ionization (ESI) source parameters 
were: capillary voltage 3.5 kV, gas flow rate 18 L/min at 220 °C, sheath gas pressure 25 PSI and flow rate 12 L/
min at 400 °C and nozzle voltage 800 V. The acquisition in dynamic SRM mode was centered on the peptide 
experimental retention time within 3 min window. All tryptic peptides and SIL peptides internal standards were 
analyzed using 3–5 SRM qualifiers and one quantifier SRM transition. In total, 96 transitions were monitored 
(Table S2) with a total cycle time of 500 ms. SRM peak areas were reported in Skyline (ver. 20.1.0.155, MacCoss 
Lab., UW, USA) and MassHunter (Agilent Technologies). Data were processed further in Excel (MS Office Pro-
fessional Plus, 2013), and the statistical analysis and data evaluation performed in GraphPad PRISM (ver. 8.0.2).

Design of SRM protein assays.  SRM Atlas (www.​srmat​las.​org) and Skyline software guided the selection 
of tryptic proteotypic peptides with sequence length restriction to 7–20 AA. In total, 27 peptides were selected, 
13 peptides (65 transitions) via SRM atlas (Table S3), and 24 peptides (75 transitions) via Skyline (Table S4). Ten 
signature peptides overlapped between SRM Atlas and Skyline (Table S5). UHPLC-SRM screening in a 100-fold 
diluted pooled serum sample was performed to select surrogate peptides based on relative intensities/peak areas, 
peak shapes, and the HSA protein sequence comprehensive coverage. The proteotypic amino acid sequences of 
signature peptides selected for HSA were verified using a BLAST search of the Homo sapiens genome in the 
NextProt database.

The solubility of synthetic peptides.  The hydrophobicity indexes and predicted water solubility of SIL 
peptides are in Table S6. Hydrophobicity indexes were calculated using Thermo Fisher Peptide analyzing tool23. 
The Innovagen Peptide solubility calculator was used to predict water solubility24. Lyophilized custom-ordered 
peptides were reconstituted in three different buffers: (i) 5% ACN in AmBic/SDC, (ii) 20% ACN in AmBic/SDC, 
and (iii) 50% ACN in AmBic/SDC. Stock solutions (10 µM) were prepared for each individual SIL-TCT and 
SIL-Ex peptide. The equimolar concentration (500 nM) mixed working solutions containing all peptides were 
prepared for SIL-TCT peptides and each SIL-Ex peptide design. The working solutions of SIL peptides (10 µL) 
were added to a 2000-fold diluted serum sample. Triplicate samples of all SIL peptide designs were prepared in 
each solvent system, processed with proteolytic protocol, and analyzed by UHPLC-SRM. The HSA sample con-
centration (nM) was determined using the SIL peptides of each design. We tested for the agreement between the 
experimental and the actual HSA concentration determined by reference methods to select an optimal solvent 
system.

http://www.srmatlas.org


4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10880  | https://doi.org/10.1038/s41598-021-90087-9

www.nature.com/scientificreports/

Results and discussion
Design of quantitative protein assay.  The selection of optimal signature peptides as protein surrogates 
is an essential step to develop selective, accurate, and precise protein assay5. Signature peptides have to be chemi-
cally stable, detectable with UHPLC-MS, and proteotypic, i.e., specific to the target protein. For this comparative 
study, we selected HSA protein, the principal constituent of blood plasma (55–60%)25,26, as a model system. 
Globular HSA protein consists of 609 amino acids (MW 66.5 kDa), forming a signal sequence (1–18 AA), a 
propeptide (19–24 AA), and a native mature protein (25–609 AA)27. We selected the initial list of 27 signature 
peptide candidates (10 in common for SRMAtlas and Skyline, three unique for SRM, and 14 unique for Skyline. 
The peptide location in the HSA protein sequence, quantifier SRM precursor and product ions, experimental 
retention times, and integrated peak areas from the initial screening are listed in Table S5. Four peptides selected 
under Skyline software’s guidance (CCAAADPHECYAK, VHTECCHGDLLECADDR, RPCFSALEVDETY-
VPK, ETCFAEEGK) were not detected in the initial screening step. The best performing surrogate peptides (10) 
were selected based on the UHPLC-MS screening (i.e., high relative response/peak area, the symmetric chroma-
tographic peak) to cover the HSA protein sequence uniformly. One selected peptide (LCTV) contained cysteine 
residue. However, the sample preparation protocol uses reduction and alkylation steps to eliminate cysteine 
residue’s influence on quantitative performance. SIL peptides were synthesized with alkylated cysteine. The SRM 
library for both SIL peptide and light serum peptide LCTV included cysteine alkylation (+ 57 Da). Typical chro-
matograms of candidate peptides with highlighted best performing surrogate peptides (10) are shown in Fig. S1.

The quantitative performance of C‑terminal extended synthetic peptides.  The best-performing 
surrogate peptides (10) were selected to cover the HSA protein sequence (Fig. 1). The SIL peptides extended 
with (i) commercial tetrapeptide (SAnYG) trypsin cleavable tag (TCT) and (ii) five amino acids at C-terminal 
R*/K* (ExC5) were compared. The water solubility and hydrophobicity scores were calculated (Table S6), except 
for hydrophobicity of SIL-TCT peptides containing nitrotyrosine modification. Three SIL-TCT sequences (i.e., 
YLYE, LCTV, FQNA) indicated low water solubility. SIL-ExC5 peptides, except for YLYE and SLHT, exhibited 
moderate hydrophobicity and good water solubility. We compared the quantitative performance using 5% ACN 
and AmBic/SDC buffer with 5% ACN to dissolve lyophilized SIL peptides. We initially tested SIL-TCT and SIL-
ExC5 peptides reconstitution in water with 5% ACN, a solvent compatible with trypsin digestion and UHPLC-
MS analysis. SIL peptides in water with 5% ACN were added into the sample diluted with AmBic/SDC buffer 
for pH optimal during enzymatic proteolysis. We calculated the concentration of light HSA peptides based on 
the light-to-heavy ratio. Average HSA concentrations determined by SIL-ExC5 and SIL-TCT peptides initially 
reconstituted in water with 5% ACN were falsely high at 666.73 nM and 867.70 nM, respectively, compared to 
the actual concentration determined by reference BCG assay and protein assay internally standardized with 
SIL-HSA (Fig. 2A and Table S7). HSA protein concentrations reported by individual SIL-ExC5 and SIL-TCT 
peptides ranged between 74.88 nM to 1,501.44 nM and 42.53 nM to 1,723.73 nM, respectively (Fig. 2A and 
Table S7). The HSA concentration was accurately (< 20% CV) determined by only two SIL-ExC5 peptides (i.e., 
LVTD and LCTV) and two SIL-TCT peptides (i.e., TYET and LVTD). Falsely low HSA protein concentrations 
reported by SIL-TCT and SIL-ExC5 peptides DDNP and DLGE were perhaps due to higher proteolytic SIL pep-
tide yields relative to corresponding light HSA peptides. On the contrary, falsely high HSA protein levels were 
determined by five SIL-TCT and SIL-ExC5 peptides (i.e., SLHT, YLYE, FQNA, LVNE, QTAL). In this case, the 
inaccurate HSA determination is probably due to SIL peptides’ low solubility in reconstitution solvent (5% ACN 
in water). The lower SIL peptide concentration resulted in a higher ratio of the SRM peak area of target HSA 
peptide (light) to SIL peptide internal standard peak area (heavy). All five peptides indicated high hydrophobic-
ity indexes, and limited water solubility was predicted for SLHT, YLYE, and FQNA (Table S6).

Peptide solubility improves with adding dimethylformamide, dimethyl sulfoxide, acetic acid, detergents, or 
increasing organic solvent content (i.e., ACN, MeOH). However, dimethylformamide, dimethyl sulfoxide, and 
detergents are not compatible with the MS technique, and high organic content reduces the trypsin digestion 
efficiency28. We improved the solubility of lyophilized SIL-ExC5 and SIL-TCT surrogate peptides, reconstitut-
ing them in AmBic/SDC buffer with 5% ACN. A bile salt surfactant SDC is compatible with trypsin digestion 
workflow up to 1% w/v29 and removable before UHPLC-MS analysis by acidic precipitation30. AmBic/SDC 
buffer was demonstrated to improve trypsin digestion efficiency and reproducibility over other additives (e.g., 
urea or guanidine hydrochloride)30. However, the average HSA concentration (n = 10) quantified by SIL-ExC5 
and SIL-TCT peptides initially reconstituted in AmBic/SDC buffer with 5% ACN was falsely low 273.41 nM 
and 254.69 nM, respectively, (Table S7). HSA concentrations determined by individual SIL-ExC5 and SIL-TCT 
peptides ranged from 5.42 to 656.61 nM and from 7.40 to 382.39 nM, respectively (Fig. 2B and Table S7). None 
of the SIL-ExC5 or SIL-TCT peptides accurately determined the HSA protein concentration (< 20% CV). All 
reported concentrations were falsely low (Fig. 2 and Table S7).

In summary, the quantitative performance of SIL-ExC5 and SIL-TCT peptides was insufficient. SIL-ExC5 
and SIL-TCT peptides DDNP and DLGE reported falsely low HSA concentration in both 5% ACN in water 
and 5% ACN in AmBic/SDC reconstitution buffers, probably due to tryptic yields different from light peptides. 
Peptides LVNE, SLHT, YLYE, and QTAL reported highly discordant HSA concentrations between SIL-TCT and 
SIL-ExC5 peptides and reconstitution solvents (i.e., water with 5% ACN and AmBic/SDC buffer with 5% ACN) 
summarized in Fig. 2 and Table S7. To investigate the nature of quantitative performance issues, we obtained SIL 
versions extended at both C- and N-termini with three (ExC3N3) and five (ExC5N5) amino acids for problematic 
surrogate peptides (i.e., LVNE, SLHT, DDNP, YLYE, QTAL).

Optimal incubation buffer for extended synthetic peptides.  Hydrophobicity and water solubil-
ity are proportional to the peptide length and primary structure. We calculated the hydrophobicity index for 
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signature peptides, and all tested SIL-Ex peptides, except for SIL-TCT peptides modified with nitrotyrosine 
(Table S6)23. Expectedly, hydrophobicity indexes were the highest for SIL-ExC5N5, with an average value of 35.6. 
In comparison, an average hydrophobicity index for selected tryptic signature peptides was 20.6, for SIL-ExC5 
and SIL-ExC3N3 peptides were 28.1 and 28.8, respectively.

To simultaneously optimize the solubility and effects of high organic content on proteolysis, we reconstituted 
each lyophilized SIL-Ex peptide in AmBic/SDC buffer with i) 5%, ii) 20%, and iii) 50% of ACN. We added the 
mixed solution of SIL-Ex peptides (10 µL) to the pooled serum sample (10 µL) diluted using AmBic/SDC buffer, 
resulting in 2.5%, 10%, and 25% of ACN in the incubation buffer, respectively. We measured SRM peak areas of 
signature peptides from light HSA and SIL-Ex peptides. Tryptic peptide yields are reported relative to light HSA 
signature peptides incubated in AmBic/SDC buffer with 2.5% ACN. As expected, the efficiency of the trypsin 
digestion of HSA protein decreased with an increasing percentage of ACN in the proteolytic buffer (Fig. S2). In 
particular, SRM peak areas of DDNP and SLHT peptides were affected (approx. tenfold decrease, Fig. S2). Perhaps 
a consequence of limited accessibility of hydrophilic locations in light HSA protein (partial loss of solubility) 
or slower interaction with trypsin active site (conformation change). Interestingly, the SRM peak areas of SIL-
ExC5 and SIL-TCT peptide DDNP remain constant, suggesting that primarily N-terminal cleavage’s efficiency 
is affected by the high ACN content. Tryptic yields of hydrophobic signature peptides YLYE, LVNE, and QTAL 
were less sensitive to the ACN in the proteolytic buffer. The yields of tryptic signature peptides YLYE, LVNE, 
and QTAL formed from light HSA were highly discordant with SIL-ExC5N5 peptides’ yields, probably due to 
different solubility of HSA protein and SIL-ExC5N5 peptides. The quantitative performance of SIL-ExC5N5 
peptides with high hydrophobicity indexes (i.e., YLYE and QTAL) was optimal when reconstituted in AmBic/
SDC buffer with 50% ACN (Fig. 3D). Yields of signature peptides YLYE and QTAL formed from SIL-ExC5N5 

Figure 2.   The quantitative performance depends on the reconstitution solvent for SIL-TCT (black) and SIL-
ExC5 (grey) peptides. The reconstitution solvent was water with 5% ACN (A) and AmBic/SDC buffer with 5% 
ACN (B). The reference HSA protein concentration marked with the red line at 500 nM (determined by BCG 
assay and protein assay using SIL-HSA).
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were up to threefold higher when reconstituted in AmBic/SDC buffer with 50% ACN compared to 5% ACN 
content (Fig. S2). However, the high content of ACN during proteolysis unfavorably reduced tryptic peptide 
yields from HSA protein. The proteolytic buffer with minimal ACN content was optimal for SIL-TCT, SIL-ExC5, 
and SIL-ExC3N3 peptides and thus selected for further investigations (Fig. 3).

The enzymatic digestion efficiency.  The enzymatic digestion efficiency severely affects the quantitative 
performance of a protein assay10,11. Previous studies demonstrated variable tryptic yields of peptides released 
from a protein. Overnight trypsin digestion is routinely used for reproducible proteolytic yields as the pep-
tide’s stability and formation efficiency may vary11. Maximal trypsinization yields of some signature peptides are 
reached within two hours10,16, while other peptides require longer digestion time30. We optimized the trypsin 
digestion duration to ensure reproducible signature peptide yields needed for a quantitative protein assay. We 
studied the signature peptide formation from light HSA protein and each version of SIL-Ex peptides after 0.5, 2, 
4, 8, 16, and 24 h of incubation. SRM peak areas of light and heavy signature peptides and determined HSA pro-
tein concentrations (nM) were plotted against incubation time (h), comparing the efficiency of light HSA prote-
olysis with SIL-Ex peptides (Figs. 4, S3 and S4). The formation of HSA signature peptides LVNE, SLHT, DDNP, 
YLYE, and QTAL was compared for SIL-TCT, SIL-ExC5, SIL-ExC3N3, and SIL-ExC5N5 peptides (Fig.  4). 
Besides, the formation of HSA signature peptides DLGE, LCTV, LVTD, TYET, and FQNA was compared for 
SIL-TCT and SIL-ExC5 peptides only (Fig. S4).

Figure 3.   The effect of organic content in the reconstitution solvent on the quantitative performance of SIL-Ex 
peptides. HSA protein concentration was determined using SIL-TCT (A), SIL-ExC5 (B), SIL-ExC3N3 (C), 
and SIL-ExC5N5 (D) peptides reconstituted in AmBic/SDC buffer with 5% (black), 20% (grey), and 50% ACN 
(white). HSA concentration determined by reference methods (500 nM) indicated as a red line; the grey area 
represents 20% tolerance.
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Figure 4.   The trypsin digestion kinetics of signature peptides, LVNEVTEFAK (A), SLHTLFGDK (B), 
DDNPNLPR (C), YLYEIAR (D), and QTALVELVK (E). SIL-Ex peptide versions are color-coded: SIL-TCT 
(blue), SIL-ExC5 (orange), SIL-ExC3N3 (green), and SIL-ExC5N5 (black). For each signature peptide, the signal 
of light serum peptide (left panel) and SIL-Ex peptide (middle panel) is shown together with determined HSA 
concentration over digestion time (right panel). HSA concentration determined by reference methods (500 nM) 
indicated as a red line.
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Optimal surrogate peptides for quantification are formed quickly within the initial hours of enzymatic diges-
tion and later produce a constant SRM response. In this study, five peptides (i.e., YLYE, LVNE, QTAL, LVTD, 
TYET) indicated fast kinetics reaching maximal signature peptide yields from light HSA within 2–4 h of incu-
bation (Figs. 4, S3 and S4). SIL peptides indicated a similar trend of rapidly reaching plateau concentration. 
However, the signal of heavy signature peptides varied markedly depending on the type of SIL-Ex peptide (Figs. 4 
and S4). Signature peptides TYET, LVTD, and LVNE, were formed from SIL-Ex peptides faster than from HSA 
protein (Fig. S4). The result was falsely low HSA concentration determined from the light-to-heavy signature 
peptide ratio. Digestion yields of signature peptides QTAL and YLYE formed from SIL-ExC5N5 peptides were 
lower, probably due to insufficient solubility in AmBic/SDC buffer with 5% ACN. On the other hand, SIL-
ExC3N3 peptides and HSA protein’s digestion efficiency was identical, except for signature peptide LVNE (Fig. 4).

The rate of signature peptide formation from target proteins has to be equal with SIL-Ex peptide for accurate 
quantification. Signature peptides SLHT, DLGE, DDNP, LCTV, and FQNA, exhibited slow formation from 
HSA protein (Figs. 4, S3 and S4). The digestion efficiencies of C-terminal extended SIL-TCT and SIL-ExC5 
peptides DLGE, LCTV, and FQNA were much faster, reaching a plateau within the initial two hours (LCTV 
and DLGE) or FQNA even in 30 min (Fig. S4). We attribute the discordant peptide yields between HSA protein 
and SIL-Ex peptides to N-terminal extension, perhaps limiting the enzymatic digestion rate. Signature peptide 
DDNP available as C-terminal extended (i.e., SIL-TCT and SIL-ExC5) and both C- and N-termini extended (i.e., 
SIL-ExC3N3 and SIL-ExC5N5) supports the assumption. SIL peptides with only C-terminal extension rapidly 
formed signature peptide DDNP, in contrast to SIL peptides, elongated at both C- and N-termini, mimicking 
the slow digestion kinetics of light HSA protein (Fig. 4). DDNP and DLGE signature peptides reportedly do 
not reach a signal plateau even after 48 h10 as acidic amino acid residues near the cleavage site reduce trypsin 
efficiency31–33. Signature peptides containing a sequence motif causing slow trypsinization are not considered 
quantitative. However, we demonstrated an accurate quantification with slow-forming signature peptides using 
an adequately designed SIL-Ex peptide.

Protein assays using extended SIL peptides and a recombinant SIL‑HSA protein.  We assessed 
the quantitative performance and reproducibility in optimal reconstitution buffers. We previously selected 
AmBic/SDC with 5% ACN for SIL-TCT, SIL-ExC5, and SIL-ExC3N3 peptides and AmBic/SDC with 50% 
ACN for hydrophobic SIL-ExC5N5 peptides. The HSA concentration determined using each type of SIL-Ex 
peptide was compared to the reference HSA concentration, the average of five signature peptides of SIL-HSA 
protein (445.9 nM). The HSA concentration determined using SIL peptides elongated only at C-terminus was 
highly inaccurate, as discussed earlier. SIL peptides elongated with (i) commercial trypsin cleavable tetrapeptide 
SAnYG tag and (ii) five amino acids of HSA protein’s natural sequence at C-terminus determined an average 
concentration of HSA at 268.6 nM and 274.3 nM, respectively (Table 1). SIL peptides extended only at C-termi-
nus were demonstrated not suitable for absolute quantification.

The quantitative accuracy improved with the use of SIL peptides extended at both C- and N-termini (i.e., 
SIL-ExC3N3 and SIL-ExC5N5). The HSA concentration determined as the average of five SIL-ExC5N5 signa-
ture peptides was 341.2 nM and ranged from 197.7 to 523.8 nM for individual peptides (Table 1). SIL-ExC3N3 
peptides determined average HSA concentration at 432.2 nM, nearly identical to SIL-HSA protein (445.9 nM, 
Table 1, and Fig. 5). Signature peptides SLHT, DDNP, YLYE, and QTAL, formed from SIL-HSA protein and SIL-
ExC3N3 peptides accurately quantified HSA concentration (500 nM) within 20% tolerance from the reference 
BCG assay. Except for LVNE peptide determining the HSA protein concentration at 398.7 nM and 267.93 nM 
by SIL-HSA protein internal standard and SIL-ExC3N3 peptide, respectively (Fig. 5).

Previous comparative studies demonstrated superior quantitative performance of SIL proteins over tryptic SIL 
or SIL-Ex peptides11–13,34. However, the position (only C-terminus or both C- and N-termini) and the length of 
the extension varied among studies. For instance, Jiang et al. compared SIL peptides extended with three amino 
acids at C-terminus with SIL peptides extended with 2–5 amino acids at both C- and N-termini to report no 
significant differences in the quantitative performance18. However, the study was limited to comparing various 
types of SIL-Ex peptides with different signature peptides18. A study by Scott et al. investigated three types of 
amino acid extensions at both termini (extended with two, four, and six amino acids) in comparison to tryptic 
SIL peptides without extension11. The superior quantitative performance was attributed to SIL-Ex elongated with 
six amino acids. However, only two surrogate peptides were investigated. Our study confirmed that SIL proteins 

Table 1.   The comparison of the quantitative performance of SIL-HSA and various types of SIL-Ex peptides 
(SIL-Ex were reconstituted in AmBic/SDC buffer with 5% ACN except for SIL-ExC5N5 indicating optimal 
quantitative performance in AmBic/SDC buffer with 50% ACN).

Peptide

SIL-TCT​ SIL-ExC5 SIL-ExC3N3 SIL-ExC5N5 SIL-HSA

nM CV (%) nM CV (%) nM CV (%) nM CV (%) nM CV (%)

DDNPNLPR 82.50 14.05 71.61 3.41 589.77 7.39 223.41 9.07 431.64 8.33

SLHTLFGDK 188.88 10.21 361.20 8.52 400.10 11.23 347.96 0.95 473.12 5.10

YLYEIAR 382.39 2.33 383.26 3.87 567.83 14.64 523.83 2.99 468.11 9.15

LVNEVTEFAK 343.12 2.07 234.24 11.66 267.93 4.66 197.66 5.10 398.73 10.53

QTALVELVK 345.95 5.45 320.92 4.59 453.52 8.01 413.01 8.13 457.73 6.81

Average 268.57 6.82 274.25 6.41 432.18 9.19 341.17 5.25 445.86 7.98
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are indeed an optimal internal standard for absolute quantification. More importantly, we demonstrated that the 
SIL-ExC3N3 peptides are an alternative with identical quantitative performance as the SIL protein.

Conclusions
This study is the first to evaluate the influence of the sequence extension’s length and position on synthetic 
extended "winged" peptides’ quantitative performance. The HSA protein model was used with a representative, 
meticulously selected set of signature peptides to deliver robust and reliable results. We demonstrated the influ-
ence of the sequence extension on enzymatic digestion yields, solubility, and overall quantitative performance. 
The optimal quantitative performance of SIL-ExC3N3 peptides was verified with the independent reference 
methods (HSA protein concentration determined on SIL-HSA internal standard and BCG assay). We recom-
mend using SIL-ExC3N3 peptides as an equally accurate but more available internal standard to SIL-proteins 
in quantitative proteomics.

Data availability
The mass spectrometry data were deposited to the PANORAMA Repository (https://​panor​amaweb.​org/U%​
20of%​20Mas​aryk%​20-%​20REC​ETOX/​Stuch​likova_​winged_​raw/​proje​ct-​begin.​view?​pageId=​Raw%​20Data).
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