The Virasoro minimal models with boundary are described in the
Landau-Ginzburg theory by introducing a boundary potential, function of the
boundary field value. The ground state field configurations become non-trivial
and are found to obey the soliton equations. The conformal invariant boundary
conditions are characterized by the reparametrization-invariant data of the
boundary potential, that are the number and degeneracies of the stationary
points. The boundary renormalization group flows are obtained by varying the
boundary potential while keeping the bulk critical: they satisfy new selection
rules and correspond to real deformations of the Arnold simple singularities of
A_k type. The description of conformal boundary conditions in terms of boundary
potential and associated ground state solitons is extended to the N=2
supersymmetric case, finding agreement with the analysis of A-type boundaries
by Hori, Iqbal and Vafa.Comment: 42 pages, 13 figure