63 research outputs found

    Triple-moment bulk hail microphysics scheme to investigate the sensitivities of hail to aerosols, A

    Get PDF
    2012 Spring.Includes bibliographical references.Hail is a frequent occurrence in warm season deep convection in many mid-latitude regions and causes significant damage to property and agricultural interests every year. Hail can also have a substantial impact on the precipitation characteristics of deep convection as well as on the dynamic and thermodynamic properties of convective downdrafts and cold-pools, which in turn can affect storm evolution and propagation. In addition, large and often destructive hail commonly occurs in severe convection, yet most one- (1M) and two-moment (2M) bulk microphysics schemes in cloud-resolving numerical models are incapable of producing large hail (diameter D ≥ 2 cm). The limits imposed by fixing one or two of the distribution parameters in these schemes often lead to particularly poor representations of particles within the tails of size distribution spectra; an especially important consideration for hail, which covers a broad range of sizes in nature. In order to improve the representation of hail distributions in simulations of deep moist convection in a cloud-resolving numerical model, a new triple-moment bulk hail microphysics scheme (3MHAIL) is presented and evaluated. The 3MHAIL scheme predicts the relative dispersion parameter for a gamma distribution function via the prediction of the sixth moment (related to the reflectivity factor) of the distribution in addition to the mass mixing ratio and number concentration (third and zeroeth moments, respectively) thereby allowing for a fully prognostic distribution function. Initial testing of this scheme reveals significant improvement in the representation of sedimentation, melting, and formation processes of hail compared to lower-order moment schemes. The 3MHAIL scheme is verified in simulations of a well-observed supercell storm that occurred over northwest Kansas on 29 June 2000 during the Severe Thunderstorm and Electrification and Precipitation Study (STEPS). Comparisons of the simulation results with the observations for this case, as well as with results of simulations using two different 2M microphysics schemes, suggest a significant improvement of the simulated storm structure and evolution is achieved with the 3MHAIL scheme. The generation of large hail and subsequent fallout in the simulation using 3MHAIL microphysics show particularly good agreement with surface hail reports for this storm as well as with previous studies of hail in supercell storms. On the other hand, the simulation with 2M microphysics produces only small hail aloft and virtually no hail at the surface, whereas a two-moment version of the 3MHAIL scheme (with a fixed relative dispersion parameter) produces unrealistically high amounts of large hail at low levels as a result of artificial shifts in the hail size spectra towards larger diameter hail during the melting process. The 3MHAIL scheme is also used to investigate the impact of changing the concentrations of aerosols that act as cloud condensation nuclei (CCN) on hail for the 29 June 2000 supercell case. For the simulated supercells in the particular environment examined, an increase in CCN from 100 to 3000 cm-3 leads to an increase in the numbers and a decrease in the sizes of cloud droplets, as expected, yet the overall storm dynamics and evolution are largely unaffected. Increases in CCN lead to non-monotonic responses in the bulk characteristics of nearly all hydrometeor fields, surface precipitation, and cold-pool strength. However, higher concentrations of CCN also result in larger hail sizes and greater amounts of large diameter (≥ 2 cm) hail both aloft as well as at the surface. Analyses of the hail formation and growth mechanisms for these simulations suggest that the combination of increased sizes of new hail particles and localized reductions in numbers of new hailstones forming near maximum growth regions with increasing CCN tends to promote conditions that lead to increased hail sizes and amounts of large hail

    Combined Observational and Modeling Efforts to Better Understand Aerosol-Cloud-Precipitation Interactions Over Land: Preliminary Results from 7-SEAS/BASELInE 2013

    Get PDF
    This talk presents some of the detailed observations of low-level stratocumulus over northern Vietnam during 7-SEASBASELInE 2013 by SMARTLabs' ACHIEVE W-band cloud radar and other remote sensing instruments. These observations are the first of their kind for this region and will aid in ongoing studies of biomass-burning aerosol impacts on local and regional weather and climate. Preliminary results from simulations using the Goddard Cumulus Ensemble (GCE) with recently implemented triple-moment bulk microphysics to examine the sensitivity of low-level stratocumulus over land to aerosols are also presented. Recommendations for future observational activities in the 7-SEAS northern region in collaboration with international partners will also be discussed

    Active and Passive Radiative Transfer Simulations for GPM-Related Field Campaigns

    Get PDF
    Using a three-dimensional radiative transfer model combined with cloud-resolving model output, we simulate active and passive sensor observations of clouds and precipitaiton. This combination of tools allows us to diagnose the contributions of various hydrometeor types. Radar multiple scattering is most closely associated with the presence of graupel. At Wband, massive amounts multiple scattering in deep convection can decorrelate the reflectivity profile from the vertical structure, but for less intense events, multiple scattering could be a useful indicator of riming. For passive sensors, polarization differences at 166 GHz indicate the presence of horizontally aligned frozen particles with pronounced aspect ratios, while high concentrations of more isotropic aggregates and graupel dampen the polarization difference while also contributing to the lowest brightness temperature depressions. The insights into remote sensing measurements will facilitate the development of improved algorithms and advanced sensors

    Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridization (FISH)

    Get PDF
    BACKGROUND: Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. METHODS: The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(® )XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H(2)O(2 )reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. RESULTS: Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 – 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 – 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 – 1.0000). CONCLUSION: Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation

    Profiling Supercooled Liquid Water Clouds with Multi-Frequency Radar

    Get PDF
    An optimal estimation scheme is employed to demonstrate the utility of using multi-band radar observations for estimating supercooled liquid profiles. Qualitative comparisons with microphysical probe images show that the retrievals are capable of producing supercooled liquid consistent with in situ data. Finally, a path forward for quantifying performance and extending the study to a more robust measurement suite is given

    Active and Passive Radiative Transfer Simulations for GPM-Related Field Campaigns

    Get PDF
    Radiative transfer modeling is an important tool for interpreting remote sensing observations. It allows us to determine how sensor characteristics will impact observations, and it gives us a framework for us to test assumptions about the phenomena we are attempting to observe. In this work, we use cloud simulations for precipitation events observed during various GPM-related field campaigns. The simulations show how various properties of clouds and precipitation affect the measurements

    Active and Passive Radiative Transfer Modeling of the Olympic Mountains Experiment

    Get PDF
    Sensor forward models are an important tool for interpreting remote sensing observations of geophysical phenomena. By implementing a three-dimensional framework, we can simulate and analyze observations from various sensors on disparate platforms. To demonstrate our model framework, we simulate observations from the Olympic Mountains Experiment (OLYMPEX). The use of cloud model simulations allows us to understand sensor response to cloud ice, falling snow, and other processes and features, and the application of model tools to observations allows us to quantify precipitation.MIIST 3D Forward ModelThe Multi-Instrument Inverse Solver Testbed(MIIST) uses the Atmospheric Radiative TransferSimulator (ARTS) for solving the vector radiativetransfer (RT) equation in up to three spatialdimensions within a spherical geometry Gas absorptiono Line-by-line calculationso Fast transmittance tables Hydrometeor scattering solverso Discrete ordinateo RT4 (Evans, 1D)o Radar Single Scattering (1D or 3D)o Monte Carlo (3D)Scattering TablesHigh-fidelity hydrometeor scatteringtables are necessary for accurateand consistent forward modeling ofmulti-frequency observations Requires full Stokes matriceso And absorption vector Randomly oriented particleso Discrete Dipole Approximationo Characteristic Basis Function Method(coming soon) Horizontally-oriented plateso Invariant Imbedding T-matrix MethodCloud Resolving SimulationsCloud resolving simulations (e.g.,NU-WRF) supply output consistentwith ARTS needs Atmospheric Informationo Temperatureo Pressure / heighto Water vapor Hydrometeor Profileso ARTS architecture ripe for explicit binmicrophysics Examples use Morrison 2M schemeThe Olympic Mountains Experiment (OLYMPEX)Validation for GPM of mid-latitudefrontal systems approaching nearcoastalmountains from the ocean Large collection of ground-based andairborne sensorso Radarso Radiometerso In situ Contemporaneous with RADEXo Two sets of radar at same frequenciesRadiometer Simulation (3 km NUWRF, 20151203, 15:00)2018.12.14 7Simulate 166 GHz polarizationdifference Corresponds to the presence of aligned icecrystals Look at trends for both simulations andobservations Simulations can tolerate lower resolutiono Larger domainSimulations from Observations: OLYMPEXSimulate sensor response usinggeophysical retrievals as input Single frequency radar retrievals Multiple scattering enhancementapparent at W band Spatially dependent phenomenonModeling Application: 1D Retrievals03 December 2015 DC-8 and ER-2 flightso Focus on APR-3 (DC-8) Citationo Stacked microphysics legso Qualitative comparisonso Range of frozen habitso Presence of supercooledliquid cloudsResults Retrievals match probeso Good qualitative match Bands of increasedreflectivity correspond tolarge Dm and highaggregate fraction Significant amounts ofsupercooled liquid wate

    From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Get PDF
    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships remain an open-ended question. To facilitate an improved understanding of the regional aerosol radiative effects, which continue to be one of the largest uncertainties in climate forcing, a joint international effort is required and anticipated to commence in springtime 2013 in northern Southeast Asia

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF
    • …
    corecore