Active and Passive Radiative Transfer Modeling of the Olympic Mountains Experiment

Ian S. Adams, S. Joseph Munchak, Kuo-Sen Kuo*, Craig Pelissier+, Thomas Clune, Rachael Kroodsma*, Adrian Loftus*

NASA Goddard Space Flight Center *Earth System Science Interdisciplinary Center, University of Maryland +Science Systems and Applications, Inc.

MIIST 3D Forward Model

The Multi-Instrument Inverse Solver Testbed (MIIST) uses the Atmospheric Radiative Transfer Simulator (ARTS) for solving the vector radiative transfer (RT) equation in up to three spatial dimensions within a spherical geometry

- Gas absorption
 - Line-by-line calculations
 - Fast transmittance tables
- Hydrometeor scattering solvers
 - Discrete ordinate
 - RT4 (Evans, 1D)
 - Radar Single Scattering (1D or 3D)
 - Monte Carlo (3D)

TRMM Overpass of Tropical Cyclone Asma

Scattering Tables

High-fidelity hydrometeor scattering tables are necessary for accurate and consistent forward modeling of multi-frequency observations

- Requires full Stokes matrices
 - $_{\circ}$ $\,$ And absorption vector $\,$
- Randomly oriented particles
 - Discrete Dipole Approximation
 - Characteristic Basis Function Method (coming soon)
- Horizontally-oriented plates
 - Invariant Imbedding T-matrix Method

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp

Cloud Resolving Simulations

Cloud resolving simulations (e.g., NU-WRF) supply output consistent with ARTS needs

- Atmospheric Information
 - Temperature
 - Pressure / height
 - o Water vapor
- Hydrometeor Profiles
 - ARTS architecture ripe for explicit bin microphysics
- Examples use Morrison 2M scheme

7.5 5.0 2.5 0.0 14.85 14.90 14.95 15.00 15.05 15.05 15.05

Total Water Mixing Ratio

The Olympic Mountains Experiment (OLYMPEX)

Validation for GPM of mid-latitude frontal systems approaching nearcoastal mountains from the ocean

- Large collection of ground-based and airborne sensors
 - \circ Radars
 - \circ Radiometers

o In situ

- Contemporaneous with RADEX
 - $_{\circ}$ $\,$ Two sets of radar at same frequencies

Olympic Mountains Experiment (OLYMPEX)

DC-8	Citation	ER-2 (Radar Definition Experiment)
CoSMIR 50, 89, 165, 183 +/- 1, 3, 8 GHz Conical and cross track scans Fixed polarization basis	King Hot Wire Probe LWC	AMPR 10.7, 19.35, 37.1, 85.5 GHz
	CDP Cloud droplet size distribution	HIWRAP
	2D-S Particle images	Ku, Ka bands; Nadir pointing
APR-3 Ku, Ka, W bands (dual polarization) Cross-track scan	HVPS-3 (x2) Particle images	CRS W band; Nadir pointing
	Cloud Particle Imager (CPI)	EXRAD X band; Nadir pointing; Conical scan
	CSI Cloud water content	AirMSPI 8 bands (355-935 nm)
Dropsondes Pressure Temperature Relative humidity Wind	2DC Particle images	CPL
	Nevzorov Total water content	355, 532, 1064 nm
	Rosemonunt Icing Probe	eMAS 38 bands (0.4-15 μm)

Radiometer Simulation (3 km NUWRF, 20151203, 15:00)

Simulate 166 GHz polarization difference

- Corresponds to the presence of aligned ice crystals
- Look at trends for both simulations and observations
- Simulations can tolerate lower resolution
 - Larger domain

Radiometer Simulation (3 km NUWRF, 20151203, 15:00)

Simulations

CoSSIR Observations (Entire Campaign)

Radar Simulation (0.5 km NUWRF, 20151204, 15:00)

Cloud Radar System Observations

W-band Simulation

Multiple Scattering Enhancement

Simulations from Observations: OLYMPEX

Simulate sensor response using geophysical retrievals as input

- Single frequency radar retrievals
- Multiple scattering enhancement apparent at W band
- Spatially dependent phenomenon

Sensitivity Study (CoSMIR in OLYMPEX)

Modeling Application: 1D Retrievals

03 December 2015

DC-8 and ER-2 flights
 o Focus on APR-3 (DC-8)

• Citation

- Stacked microphysics legs
- Qualitative comparisons
- Range of frozen habits
- Presence of supercooled liquid clouds

APR-3

Results

- Retrievals match probes
 Good qualitative match
- Bands of increased reflectivity correspond to large D_m and high aggregate fraction
- Significant amounts of supercooled liquid water

Future Work

- Interesting microphysics
 - Riming
 - Polycrystals
- Incorporate Inversions
 - o 3D Estimation
 - Multi-sensors retrievals
- Extend polarization statistics

 Full dynamic range
- Melting particles
- More aligned ice
 - Scattering using IITM

