1,006 research outputs found

    Time persistency of floating particle clusters in free-surface turbulence

    Full text link
    We study the dispersion of light particles floating on a flat shear-free surface of an open channel in which the flow is turbulent. This configuration mimics the motion of buoyant matter (e.g. phytoplankton, pollutants or nutrients) in water bodies when surface waves and ripples are smooth or absent. We perform direct numerical simulation of turbulence coupled with Lagrangian particle tracking, considering different values of the shear Reynolds number (Re{\tau} = 171 and 509) and of the Stokes number (0.06 < St < 1 in viscous units). Results show that particle buoyancy induces clusters that evolve towards a long-term fractal distribution in a time much longer than the Lagrangian integral fluid time scale, indicating that such clusters over-live the surface turbulent structures which produced them. We quantify cluster dynamics, crucial when modeling dispersion in free-surface flow turbulence, via the time evolution of the cluster correlation dimension

    BPOP-v1 model: exploring the impact of changes in the biological pump on the shelf sea and ocean nutrient and redox state

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.The biological pump of the ocean has changed over Earth's history, from one dominated by prokaryotes to one involving a mixture of prokaryotes and eukaryotes with trophic structure. Changes in the biological pump are in turn hypothesized to have caused important changes in the nutrient and redox properties of the ocean. To explore these hypotheses, we present here a new box model including oxygen (O), phosphorus (P) and a dynamical biological pump. Our Biological Pump, Oxygen and Phosphorus (BPOP) model accounts for two – small and large – organic matter species generated by production and coagulation, respectively. Export and burial of these particles are regulated by a remineralization length (zrem) scheme. We independently vary zrem of small and large particles in order to study how changes in sinking speeds and remineralization rates affect the major biogeochemical fluxes and O and P ocean concentrations. Modeled O and P budgets and fluxes lie reasonably close to present estimates for zrem in the range of currently measured values. Our results highlight that relatively small changes in zrem of the large particles can have important impacts on the O and P ocean availability and support the idea that an early ocean dominated by small particles was nutrient rich due to the inefficient removal of P to sediments. The results also suggest that extremely low oxygen concentrations in the shelf can coexist with an oxygenated deep open ocean for realistic values of zrem, especially for large values of the small-particle zrem. This could challenge conventional interpretations that the Proterozoic deep ocean was anoxic, which are derived from shelf and slope sediment redox data. This simple and computationally inexpensive model is a promising tool to investigate the impact of changes in the organic matter sinking and remineralization rates as well as changes in physical processes coupled with the biological pump in a variety of case studies.Natural Environment Research Council (NERC

    On-glass optoelectronic platform for on-chip detection of DNA

    Get PDF
    Lab-on-chip are analytical systems which, compared to traditional methods, offer significant reduction of sample, reagent, energy consumption and waste production. Within this framework, we report on the development and testing of an optoelectronic platform suitable for the on-chip detection of fluorescent molecules. The platform combines on a single glass substrate hydrogenated amorphous silicon photosensors and a long pass interferential filter. The design of the optoelectronic components has been carried out taking into account the spectral properties of the selected fluorescent molecule. We have chosen the [Ru(phen)2(dppz)]2+ which exhibits a high fluorescence when it is complexed with nucleic acids in double helix. The on-glass optoelectronic platform, coupled with a microfluidic network, has been tested in detection of double-stranded DNA (dsDNA) reaching a detection limit as low as 10 ng/μL

    Ergodicity in randomly perturbed quantum systems

    Get PDF
    The theoretical cornerstone of statistical mechanics is the ergodic assumption that all accessible configurations of a physical system are equally likely. Here we show how such property arises when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.Comment: 6 pages, 5 figure

    Experimental realization of quantum zeno dynamics

    Get PDF
    It is generally impossible to probe a quantum system without disturbing it. However, it is possible to exploit the back-action of quantum measurements and strong couplings to tailor and protect the coherent evolution of a quantum system. This is a profound and counterintuitive phenomenon known as quantum Zeno dynamics (QZD). Here we demonstrate QZD with a rubidium Bose-Einstein condensate in a five-level Hilbert space. We harness measurements and strong couplings to dynamically disconnect different groups of quantum states and constrain the atoms to coherently evolve inside a two-level subregion. In parallel to the foundational importance due to the realization of a dynamical superselection rule and the theory of quantum measurements, this is an important step forward in protecting and controlling quantum dynamics and, broadly speaking, quantum information processing.Comment: 7 pages, 6 figure

    Customized multichannel measurement system for microbial fuel cell characterization

    Get PDF
    This work presents the development of an automatic and customized measuring system employing sigma-delta analog-to-digital converters and transimpedance amplifiers for precise mea- surements of voltage and current signals generated by microbial fuel cells (MFCs). The system can perform multi-step discharge protocols to accurately measure the power output of MFCs, and has been calibrated to ensure high precision and low noise measurements. One of the key features of the proposed measuring system is its ability to conduct long-term measurements with variable time steps. Moreover, it is portable and cost-effective, making it ideal for use in laboratories without sophisti- cated bench instrumentation. The system is expandable, ranging from 2 to 12 channels by adding dual-channel boards, which allows for testing of multiple MFCs simultaneously. The functionality of the system was tested using a six-channel setup, and the results demonstrated its ability to detect and distinguish current signals from different MFCs with varying output characteristics. The power measurements obtained using the system also allow for the determination of the output resistance of the MFCs being tested. Overall, the developed measuring system is a useful tool for characterizing the performance of MFCs, and can be helpful in the optimization and development of sustainable energy production technologies

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems

    Chain formation can enhance the vertical migration of phytoplankton through turbulence

    Get PDF
    Many species of motile phytoplankton can actively form long multicellular chains by remaining attached to one another after cell division. While chains swim more rapidly than single cells of the same species, chain formation also dramatically reduces phytoplankton’s ability to maintain their bearing. This suggests that turbulence, which acts to randomize swimming direction, could sharply attenuate a chain’s ability to migrate between well-lit surface waters during the day and deeper nutrient rich waters at night. Here we use numerical models to investigate how chain formation affects the migration of phytoplankton through a turbulent water column. Unexpectedly, we find that the elongated shape of chains helps them travel through weak to moderate turbulence much more effectively than single cells and isolate the physical processes that confer chains this ability. Our findings provide a new mechanistic understanding of how turbulence can select for phytoplankton with elongated morphologies and may help explain why turbulence triggers chain formation
    corecore