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Abstract

The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the
time average of an observable equals its ensemble average. Here, we show how such a property is present
when an open quantum system is continuously perturbed by an external environment effectively observing
the system at random times while the system dynamics approaches the quantum Zeno regime. In this
context, by large deviation theory we analytically show how the most probable value of the probability for
the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition
is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.

1. Introduction

Ergodicity plays a key role in statistical physics. In classical mechanics it was introduced by Boltzmann [1] and
corresponds to the fact that over along period of time all portions of phase space (of constant energy) are visited for
atime proportional to the respective phase space volume. As a consequence, time and ensemble (i.e. phase space)
average of dynamical variables coincide each other for an ergodic system. Then, the notion of ergodicity was first
extended to quantum mechanics by von Neumann [2, 3]. The main difficulties were the quantum generalisation of
the classical phase space, as investigated later by Wigner [4], and the concept of distance between quantum states.
The von Neumann definition of ergodicity has then been criticised as summarised in [5-7]. This has led to a revised
definition of quantum ergodicity by Peres [5] based on his definition of quantum chaos, and by considering
observables as time dependent operators in the Heisenberg picture. He has hence defined quantum ergodicity by
the equality of the time average of an arbitrary quantum operator and its ensemble average. More recently, in [7, 8]
quantum ergodicity has been studied in terms of the energy structure of the system, namely its eigenenergies and
energy spacings. The absence of degeneracies then leads to the ergodic property of coinciding time and ensemble
averages, without involving the notion of quantum chaos. Moreover, ergodic dynamics has been demonstrated in a
small quantum system consisting of only three superconducting qubits, as a platform for investigating various
phenomena in non-equilibrium thermodynamics [9].

In a different framework, the theory of large deviations (LD) allows one to investigate the asymptotic
exponential decay of probabilities associated with large fluctuations of stochastic variables, for both classical and
quantum systems [11-13]. The LD theory has been discussed in the context of quantum gases [14], quantum
spin systems [15] and, especially, quantum jump trajectories [16, 17] for open quantum systems. In the latter
case, the thermodynamics of a quantum system in continuous interaction with the environment (external
reservoir) has been studied and the statistics of quantum jumps in the long time limit has been treated from the
point of view of dynamical phase transitions in the trajectory space. As a matter of fact, the dynamics of any open
quantum system can be always described in terms of a unitary interaction between the system and an external
environment followed by a projective (jump) measurement [18].

An open system, i.e. a system exchanging energy and/or matter with its external environment (usually far
from an equilibrium regime), is dissipative when its total energy is not a preserved quantity, and the system

©2017 IOP Publishing Ltd
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Figure 1. Pictorial representation of two measurement schemes on an open quantum system, corresponding, respectively, to here
called geometric Og and arithmetic O, averages of a generic observable O. The black lines represent the interaction with the external
environment that is mimicked by consecutive projective measurements on the system. Note that the total time, corresponding to a
given realisation of the measurement sequence, is a random variable depending on how the stochasticity is realised.

integrability turns out to be broken [10]. In our case, the dissipation is introduced by applying stochastic
quantum measurements to a finite-dimensional quantum system realised with cold atoms, and we study the
survival probability of the quantum system in its initial state. The fluctuations in the measurement outcomes
both in time and for different realisations allow us to define an equivalent of time and ensemble averages, and to
study an ergodic property of the system.

It is worth emphasising how the monitoring of a given quantum system by a frequent enough series of
measurements is linked to the well-known quantum Zeno effect (QZE) [19, 20], resulting from the statistical
indistinguishability of neighbouring quantum states [21]. Experimentally, the quantum Zeno effect has been
observed on a wide range of different experimental platforms, with ions [22], polarised photons [23], and cold
atoms [24]. In particular, in [24] in a system of cold sodium atoms trapped in a far-detuned standing wave of
light, it has been observed how the decay features of the atoms are suppressed (Zeno effect) or enhanced (anti-
Zeno effect) with respect to the unperturbed case, according to the frequency of the measurements. Very
recently, the stochastic quantum Zeno effect (SQZE) has been introduced [25, 26], analysing the dependence of
Zeno phenomena on a source of randomness in a protective measurement sequence. In particular, in [26] a
general quantum system subjected to an arbitrary but fixed number of consecutive projective measurements is
considered. If the time interval between the measurements is randomly distributed, the survival probability, i.e.
the probability to remain in the initial quantum state is itself a random variable taking on different values
corresponding to different realisations of the measurement sequence. The sensitivity of such survival probability
with respect to the stochasticity in the time interval between the measurements has been also quantified by
means of the Fisher information [27].

The main result of the present article is the theoretical and experimental demonstration, by applying LD
theory, of the equivalence between the analogous of time and ensemble averages of the corresponding stochastic
series of quantum projective measurements, hence the presence of ergodicity, when approaching the quantum
Zeno regime. This property will pave the way towards the development of new feasible schemes to control
quantum systems by tunable and usually deleterious stochastic noise.

Given an observable O, we introduce two schemes to take into account the presence of stochastic noise
arising from an external environment applying effectively consecutive quantum projective measurements to the
system, as shown in figure 1. The first scheme is based on the measurement of O after the single dynamical
evolution of a system that does interact with the environment at times being stochastically distributed
(geometric average Og). The second scheme consists of the averaging of the final observable outcomes over
different dynamical realisations of the system each periodically interacting with the environment (arithmetic
average O,). Then, different realisations correspond to different time intervals in the system-environment
interaction, but extracted from the same stochastic probability distribution as in the first scheme. The total
number of times in which the time interval is sampled by the probability distribution, moreover, establishes the
relative weight to compute the arithmetic average O,. The reason why they are, respectively, called geometric
and arithmetic averages will be clearer in the following, as well as their relation to the time and ensemble
averages. We realised these schemes experimentally using a Bose—Einstein condensate (BEC) of Rubidium
(*Rb) atoms, prepared on an atom chip [28].
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2. Methods

2.1. Theory

Let us consider a quantum mechanical system under the evolution of a time-independent Hamiltonian H and
initially prepared in a state p, = |1bg) (1|. Then, it is subjected to m consecutive projective measurements with
projection operator P = |1) (10| after intervals of free evolution of time length p; G =1,...,m).The
observable O is represented by the projection operator onto the state |ty), i.e. O = P. The quantum mechanical
expectation value of O here corresponds to the so-called survival probability, namely, the probability that the
system is still in the initial state at the end of the evolution. We take the 4, to be independent and identically
distributed (i.i.d.) random variables sampled from a given distribution p (), with the normalisation

f du p(p) = 1and the mean value 7. The density matrix at the end of the evolution for a total time

T= Z;”:l o corresponding to a given realisation of the measurement sequence { ,uj} = {uj; i=1,2,...,m},
is given by

Ro ({151 Rt (141 1)
1) = 1
p({1) D )
where we have defined Rm({uj}) = HT:l PUP,withU; = exp(—inj), and
P} = Tr[Rm({,uj})poRrL({:uj})] (2)

is the survival probability. The reduced Planck’s constant 7 is set to unity. Note that 7 is a random variable that
depends on the realisation of the sequence { 11;}, while P depends on the system Hamiltonian H [29], the
initial density matrix p,, and also on the probability distribution p (y).

The survival probability can be also expressed as

Pl =TT 4@, 3)
j=1

where q (1) = | (1o Ujlibo) I* is the survival probability after a single measurement. In this way, by using LD
theory, one can derive the probability distribution of the survival probability P({ i) Prob(P), with respect to
different realisations of the sequence { i1 ;1 [12,26]. According to the shape of p (1), one can calculate the survival
probability’s ensemble average, i.e.

(P(m)) = ( f dup(u)q(u)) = eXP(mln f dup(u)q(u)), (4)
Iz Iz

and its most probable value, defined as the value which minimises the rate function

J(P) = lim,,, ,.{—In[Prob(P)]/m}.In[26], it has been proved that this most probable value is equivalent to
the log-average of the quantity q (1) with respect to p (u), namely to the geometric average 7, of the survival
probability weighted by p (u):

Bo=]] awm™® = exp ( f dup(u)ln(q(ﬂ)'")), 5)
{u} "

where index of multiplication assumes all possible values { 11}, i.e. the ones in the support of p (42). In the limit of
alarge number of measurements M, the geometric average 7, (1) is the value to which the time average

. 1 ¥ m
Pu(m) = — S P DF (6)
M5
of the survival probability P({ 11;}) converges:
R T P
P(m) = NIIILHOOM kz::lp({uj}j:l)k = Fe(m). @)

Note that the survival probability’s value after m measurements can be estimated by using the corresponding
value P({ 1 }];: 1) after k measurements, by the relation P({ ; ) =Py 14 }’]?:1)%. This value, then, is averaged
for k = 1,...,M,and in the limit of large M converges to the geometric average.

Additionally, one can consider the ordered case of periodic projective measurements, i.e. 1; = p, butwith g1

beingselected according to p (). This leads to the definition of the arithmetic average, i.e.
T = f dpp (1) ()™ = exp (ln f dp (u)q(u)’“)- (®)
1 Iz

Using Jensen’s inequality, namely (In(x)) < In({x)), and considering that (x)" < (x™)forany x € [0, 1]and
m € N, it follows that7_9g < (P) < P.
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Figure 2. Probability distribution Prob (P) of the survival probability. The grey boxes refers to the relative frequencies of P, obtained
by evaluating numerically 1000 random realisations of the survival probability after m = 100 measurements. They are compared to
the expected distribution shown in dark red, equation (13). The top panel shows the results in the Zeno regime, the lower panel for
violated Zeno condition. As it can be seen, the values of the geometric average 7, and of the expectation value () are very similar. In
the Zeno limit, also 7, is very close to these two values, unlike the lower panel where the Zeno condition does not hold, hence
demonstrating the ergodic hypothesis for a randomly perturbed quantum system only in the Zeno regime.

As stated, the main result of this Letter is the theoretical demonstration and the experimental observation
that in the Zeno regimeit is sufficient to examine the series of constant ;. in order to determine 7, 7, and (P).
This Zeno regimeis defined by

m [pGoIng(uydn = m(ng () < 1. ©
Within this limit, indeed, all three averages are equal:
P~ (l+mlng) =1+ m(lng) = 7, (10)

and as a consequence of the relation B, < (P) < F, the equality holds also for the value of the ensemble
average. Since in the geometric average the noise is averaged in time, while the other two averages are averages
over different realisations, this equality means that the system dynamics is ergodic. More specifically, we can
define the normalised discrepancy D between 7, and 7, as

D= 7Pg =1 —Aq(um) oy A
=2 _f_1_¢ ~ Aq(p, m), (11)

F

where Aq(u, m) = In{q(u)™) — (Ing(u)™). Note that Aq (i, m) is approximately equal to zero in the Zeno
regime, otherwise the equality in equation (10) (second-order Zeno approximation) breaks down. Indeed, the
leading term in D is of fourth order in 1, i.e.

A/
I

2
Aq(u, m) ~ %(AZH)Z(M — 1), (12)

which is determined by the second and the fourth moment of p (1) (v, = £ ) dp p () p? and
Uy = £ L du p () i, respectively) and by the variance of the energy A?H , and scales quadratically with the

number of measurements m (see appendix A).
For better clarity let us consider a bimodal distribution for p (x), with values pV and * and probability p,
and p, = 1 — p,. The survival probability in the Stirling approximation for m sufficiently large is distributed as

1 (k(P) — mp,)?
Prob ~ — S 13
rob(P) —Zmelpz exp( 2 b (13)
_ 2)
k(P) InP — mlng(u®) (14)

T g — ng(u®)’

where k (P) is the frequency of the event (1 (see appendix B). Figure 2 shows the distribution Prob (P) of the
survival probability for this bimodal distribution. The grey boxes show the relative frequencies of P with ™V = 1 s
after m = 100 measurements for 1000 random realisations as compared to the expected distribution, equation (13)
shown in dark red. The top panel shows the results for ;® = 2 pus (satisfying Zeno condition and ergodic), the lower
panel for ;1® = 10 us (not satisfying Zeno condition and not ergodic). We select two values of 1 (i.e., 2 is and

10 us) in order to show two different scenarios closely related to the experimental observations (see figure 5). Indeed,

4
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Table 1. Arithmetic and geometric averages 7, and 7 asa function of the probability p, for a

bimodal distribution p (1), expressed with four decimal digits. In the simulations we have
chosen pV = 1 ps, u® = 10 ps, AH = 27 - 2.5 kHz,and m = 100.

b1 A 2

0.01 0.0905 0.0842
0.05 0.1234 0.0927
0.2 0.2470 0.1329
0.5 0.4941 0.2729
0.8 0.7412 0.5606
0.95 0.8648 0.8035
0.99 0.8977 0.8845

p® = 2 psis close to the minimal time interval that is experimentally feasible and leads to Zeno dynamics in a
regime where the geometric average 7, can also be different from 1 (depending on the choice of p,). On the other
side, 111? = 10 s guarantees that the Zeno condition is violated with 7, being however significantly larger than zero.
In both scenarios 7, is the maximal value of Prob (P) and the expectation value (P) is very close to it. In the Zeno
limit, also 7, is very close to these two values, while in the lower panel, where the Zeno condition is violated, it
assumes a distinctly different value, confirming the analytical results. The other parameters are

AH = 2w - 2.5 kHz, p; = 0.8and p, = 0.2. Qualitatively similar behaviours have been observed for other
parameter values. In table 1 we show the difference between the values of 7, and 7, for abimodal distribution when
varying the probability p; but with 1® = 10 us. Outside the Zeno regime, the arithmetic average 7, is always
different from the geometric average 7. Such discrepancy disappears when the stochasticity in the time interval
between the measurements vanishes, i.e. for p; = 0 (complete leakage) and for p, = 1(standard Zeno regime). All
the theoretical predictions are well corroborated by the experimental data.

2.2. Experimental methods

We experimentally test our model with a Bose~Einstein condensate of *’Rb produced in a magnetic micro-trap
realised with an atom chip. The trap has a longitudinal frequency of 46 Hz, the radial trapping frequency is

950 Hz. The atoms are evaporated to quantum degeneracy by ramping down the frequency of a radio frequency
(RF) field. The BEC has typically 8-10* atoms, a critical temperature of 0.5 ;1K and is at 300 m from the chip
surface. The magnetic fields for the micro-trap are provided by a Z-shaped wire on the atom chip and an external
pair of Helmholtz coils. The RF fields for evaporation and manipulation of the Zeeman states are produced by
two further conductors also integrated on the atom chip.

We note that the ground state of ’Rb is a hyperfine doublet separated by 6.834 GHz with total spin F = 2
and F = 1, respectively. To prepare the atoms for the experiment, the condensate is released from the magnetic
trap and allowed to expand freely for 0.7 ms while a constant magnetic field bias of 6.179 G is applied in a fixed
direction. This procedure ensures that the atom remain oriented in state |F = 2, mp = +2) and strongly
suppresses the effect of atom-atom interactions by reducing the atomic density. The preparation consists in
three steps. In the first step all the atoms are brought into the |F = 2, mp = 0) state (see figure 3) with high
fidelity (~95%). This is obtained applying a 50 s long frequency modulated RF pulse designed with an optimal
control strategy [31]. After the RF pulse we transfer the whole |F = 2, mz = 0) population into the
|F = 1, mp = 0) sub-level by shining in bichromatic (Raman) laser light. This is the initial state p, for our
experiment. Note, that with our choice of laser polarisations and thanks to the presence of the homogeneous bias
field shifting away from resonance other magnetic sub-levels, the bichromatic light does not alter the population
of any other magnetic sub-levels. The preparation is completed by applying another RF pulse to place some
atomic population in the |F = 2, mp = £1) states for normalization of the imaging procedure. Atoms in these
last states will be not affected during the actual experiment, so they can be used as a control sample population.

In order to check each step of the preparation procedure, we record the number of atoms in each of the 8 1
states by applying a Stern—Gerlach method. In this regard, an inhomogeneous magnetic field is applied along the
quantisation axis for 10 ms. This causes the different mz-sub-levels to spatially separate. After a total time of 23 ms of
expansion we shine in a monochromatic light on resonance with the |F = 2) — |F’ = 3) transition for 200 us,
pushing away all atoms in the F = 2 sub-levels and recording the shadow cast by these atoms onto a CCD camera. We
let the remaining atoms expand for further 1 ms and then we apply a bichromatic pulse containing light resonant to
the|F = 2) — |F' = 3)and|F = 1) — |F’ = 2) transitions, effectively casting onto the CCD the shadow of the
atomsin the F = 1 sub-levels. Another two CCD images to acquire the background complete the imaging procedure.

The experiments are performed by coupling the |F = 1, mp = 0)and |F = 2, mp = 0) with the same Raman
transition used for preparation, driven at a Rabi frequency of 5 kHz by a bichromatic laser beam (figure 4). Since we
are working with ground state atoms, with our choice of laser polarisations and thanks to the presence of the

5
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step 2 - Raman pulse
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Figure 3. State preparation sequence for the SQZE experiment. After the condensation in the pure state |[F = 2, mp = +2), in the first
step the atoms are transferred to the state |F = 2, mp = 0) with fidelity ~95%. In the second step, by two Raman lasers the atoms in
this sub-level are transferred to the lower state |F = 1, mp = 0), which is the initial state p,, for our experiment. In the third and last
step, a fixed amount of population is transferred in the side sub-levels |F = 1, mz = £1). These atoms will be used as a benchmark to
calculate the survival probability after the experiment.

°
mg=+2
h Mg=+1
mg=0 i
mg=-1 F=2 08 §
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04
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02|
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m:=0 F=1 0t I 000000000
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Figure 4. Confinement induced by pulsed quantum Zeno effect. The ground state structure of the ’Rb in presence of a magnetic field
consists of two hyperfine levels (F = 1 and F = 2), with no internal degeneracy. A laser induced Raman transition couples the sub-
levels |[F = 1, mp = 0) and |[F = 2, mp = 0), whilealaser on resonance with the transition |F = 2) — |F’ = 3) (red arrows in the
picture) depletes the population of the former. If the laser is strong enough, this equates to a projective measurement. On the right we
show the typical exponential decay of the survival probability of the atoms in the |F = 1, mp = 0) sub-level while the Raman coupling
is on, and simultaneously the laser resonant to the |[F = 2) — |F’ = 3) transition is pulsed 100 times. The survival probability is
plotted as a function of the interval it between two pulses.

homogeneous bias field shifting away from resonance other magnetic sub-levels and selection rules for Raman
transitions, we have effectively isolated a closed 2-level system. We realise the projective measurements P = [)g) (1|
by shining theatoms witha 1 ps pulse of imaging light, resonant with the |F = 2) — |F’ = 3) component of the
Rubidium D2 line. Note that from the excited state |[F’ = 3) atoms will immediately decay outside the condensate
and will not be seen by our imaging system. Under constant coupling by the Raman beams, we apply 100 projective
measurement P after variable intervals of free evolution 1 ;- At the end of the sequence we measure the population
remaining in state [F = 1, mp = 0) and normalise it by comparison with the population in states

|F = 1, mp = £1). This allows to measure, in a single shot, the survival probability PP of the atoms in the initial state.
Each experimental sequence is repeated 7 times to obtain averages and standard deviations.

3. Results

To realise the theoretical predictions experimentally we measure the geometric and arithmetic averages of the
survival probability for an underlying bimodal distribution, where we take ;") = 2 s to be fixed and p®
variable between 2 ps and 25 us.




Quantum Sci. Technol. 2 (2017) 015007 S Gherardini et al

08~ ®
06
04

0.2

0.8 [~
06 [~ 7
04 - 7

02 7

06 [~ u

04 [ E -
02 E 8
x x |

0 5 10 15 w® (us) 25

Figure 5. Scaling of 7_9g (blue) and 7, (yellow) with the interval length 1 of a bimodal distribution for p(x). Inall three cases

D =2 ps, AH = 2.5 kHz. The probabilities of the bimodal distribution (p,, p,) are (0.2, 0.8) (upper panel), (0.5, 0.5) (middle
panel), and (0.8, 0.2) (lower panel). The solid lines are theoretical curves, the single points are experimental values where the error
bars indicate the standard deviation of the experimental error. The Zeno regime corresponds to vanishing .

In a first set of experiments we measure the arithmetic average 7, by fixing the intervals of free evolution 14
tobeall the same and equal to ;1 € {uV, ;¥ } and determine P (1), i.e the probability for an atom to remain in
the initial state as a function of x. As shown in figure 4, P(u) displays the characteristic exponential decay,
becoming negligible, in our case, after 9 ys. After measuring P(uV) and P(?)), we then calculate the
arithmetic average of the two data with statistical weights p, and p,, respectively. In this way we obtain 7, (u®))
which represents the statistical mean averaged over the two possible system configurations as a function of the
variable time p?. In figure 5 we report as yellow dots the results of three choices (0.2, 0.8), (0.5, 0.5), and
(0.8, 0.2) for the statistical weights (p,, p,).

In order to determine the geometric average 7, of a single realisation, we perform a second set of
experiments. In each experimental sequence we now choose the intervals of free evolution 4, from a bimodal
distribution given by 1V and p® with probabilities (p,, p,). The results of these experiments give the
geometrical average 7, (11?)) of the survival probability as a function of the parameter ;(*. We again choose the
probabilities (0.2, 0.8), (0.5, 0.5),and (0.8, 0.2) and report the experimental results, as blue squares in figure 5.
As can be seen in the figure, the agreement of theoretical predictions and experiments is generally very good,
although some deviations go beyond the error bars and are systematic. Indeed, in the model the measurement
hasbeen assumed to be instantaneous while in the experiment it is a dissipative process of a duration of about
1 ps. Furthermore, we can see in the figure, that for small values of u(z), thatis in the Zeno regime, the two
averages P, and F,, playing the role of time and ensemble averages, practically coincide. This has been predicted

by approximating the discrepancy between the two quantities as Agq (i, m) = mTZ (N2H)* (v — v3), whichiis of

fourth order in p(V, ®. Note that figure 2 corresponds to two cases of the lower panel of figure 5.

4, Discussion and conclusion

We have analytically demonstrated the occurrence of an ergodic property when a quantum system is perturbed
by an external environment that effectively measures the system at random times with its dynamics approaching
aZeno regime. In particular, we exploit large deviation theory to prove that the most probable value of the
probability for the system to be in a given state equals to the non-stochastic case when the Zeno condition holds.
Furthermore, we have experimentally tested these results along the transition to the Zeno regime using a BEC of
Rubidium atoms which are trapped on an atom chip. Then, since the discrepancy between the statistical
averages, here investigated, do strongly depend on the second and fourth statistical moments of the noise
distribution p (1) outside the Zeno regime, one could effectively determine the influence of the stochastic noise
source on the dynamics of a fully controlled quantum system, hence characterising the external environment.

7
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On top of that, although we have explicitly studied Hamiltonian dynamics and applied the projective
measurement on an initial pure state, the method can be also generalised to arbitrary mixed input states with the
dynamics being described by completely positive trace-preserving maps [30] and to the case of measurements
projecting the system on higher dimensional Hilbert subspaces, hence leading to Stochastic Quantum Zeno
Dynamics [25, 26, 32]. Finally, these results are expected to represent further steps towards controlled
manipulations of quantum systems via dissipative interactions [33, 34] where one can indeed control the noisy
environment or part of it in order to perform desired challenging tasks like the ones necessary for future
quantum technologies.
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Appendix A. Derivation of equation (12)

To derive equation (12) let us consider the series expansion of ¢ and its logarithm up to fourth order, namely
q" =1— m&NHp? + %['YH + 32m — 1)(AH)* p* + O(uf)
and
Ing™ = —mAH? + %m — 3(AHY it + O(uf),

where 7, = H* — 4H?H + 6H*H? — 3H*is the kurtosis of the Hamiltonian. Hence, within this fourth order
approximation Aq (u, m) reads

Aq ~mNHy, — %m — 3(’H) |1y
+ In {1 — mAN*Hv, + %[7}1 + 32m — 1)(A2H)2]V4}

2 2
~ %(AZH)ZM; - mT(AZH)Zyﬁ.

Appendix B. Derivation of equation (13)

To derive equation (13) let us write the survival probability P({1} ) as
P=q (M(l))k(P)q (M(Z))m—k(P),
and taking the logarithm of P. Equation (14) then follows by resolving for k (P). Moreover, the frequency k (P)

is binomially distributed, namely

m! m—
Prob(k(P)) = o k(,P))!plk(P)p2 k(fP)‘

Hence, by using the Stirling approximation, for m sufficiently large the binomial distribution Prob (k (P)) can be
approximated by a Gaussian one, thus yielding equation (13).
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