6 research outputs found

    Growth and properties of ZnO:Al on textured glass for thin film solar cells

    Get PDF
    Aluminium induced texturing (AIT) method has been used to texture glass substrates in order to enhance the photon absorption in thin film solar cells. The resultant glass roughness has been analyzed by varying the AIT process parameters and it has been found that the deposition method of Al is a decisive factor in tuning the texture. Two types of textures, a soft (texture E) and a rough texture (texture S), were achieved from the thermally evaporated and sputtered Al layers through AIT process. Aluminium-doped zinc oxide (AZO) layers of different thickness were deposited over both textures and over smooth glass. Haze values above 30% were obtained for texture S+AZO and above 10% for texture E+AZO. The resultant morphologies were free from sharp edges or deep valleys and the transparency and the resistivity values were also good enough to be used as front contact for thin film solar cells. In order to demonstrate the light absorption enhancement in a solar cell device, 200 nm of a-Si:H followed by 300nm of Ag were grown over the textured and smooth substrates with AZO, and an optical absorption enhancement of 35% for texture E and 53% for texture S was obtained in comparison to the smooth substrate

    Aluminium induced texturing of glass substrates with improved light management for thin film solar cells

    Get PDF
    Aluminium induced texturing (AIT) method has been used to texture glass substrates to enhance photon absorption in microcrystalline thin film Si solar cells. In this process, a thin Al film is deposited on a glass substrate and a non-uniform redox reaction between the glass and the Al film occurs when they are annealed at high temperature. After etching the reaction products, the resultant glass surface presents a uniform and rough morphology. In this work, three different textures (­σrms ~85, ~95, ~125 nm) have been achieved by tuning the dc sputtering power and over them and over smooth glass, pin microcrystalline silicon solar cells have been fabricated. The cells deposited over the textured substrates showed an efficiency improvement in comparison to the cells deposited over the smooth glass. The best result was given for the glass texture σrms~125 nm that led to an average efficiency 2.1% higher than that given by the cell deposited on smooth glas

    Analysis by Finite Element Calculations of Light Scattering in Laser-textured AZO Films for PV thin-film Solar Cells

    Get PDF
    In the thin-film photovoltaic industry, to achieve a high light scattering in one or more of the cell interfaces is one of the strategies that allow an enhancement of light absorption inside the cell and, therefore, a better device behavior and efficiency. Although chemical etching is the standard method to texture surfaces for that scattering improvement, laser light has shown as a new way for texturizing different materials, maintaining a good control of the final topography with a unique, clean, and quite precise process. In this work AZO films with different texture parameters are fabricated. The typical parameters used to characterize them, as the root mean square roughness or the haze factor, are discussed and, for deeper understanding of the scattering mechanisms, the light behavior in the films is simulated using a finite element method code. This method gives information about the light intensity in each point of the system, allowing the precise characterization of the scattering behavior near the film surface, and it can be used as well to calculate a simulated haze factor that can be compared with experimental measurements. A discussion of the validation of the numerical code, based in a comprehensive comparison with experimental data is include

    Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    Get PDF
    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO4 laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10-2 Ω·cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing

    Investigation on the structural changes of ZnO:Er:Yb thin film during laser annealing to fabricate a transparent conducting upconverter

    Get PDF
    A transparent and conducting ZnO:Er:Yb thin film with upconversion properties has been achieved after being annealed with continuous laser radiation just before the ablation point of the material. This work demonstrates that the laser energy preserves the conductivity of the film and at the same time creates an adequate surrounding for Er and Yb to produce visible upconversion at 660, 560, 520, and 480 nm under 980 nm laser excitation. The relation between the structural, electrical and upconversion properties is discussed. It is observed that the laser energy melts part of the material, which recrystallizes creating rare earth oxides and two different wurtzite structures, one with substitutional rare earths and oxygen vacancies (responsible for the conductivity) and the other without substitutional rare earth ions (responsible for the upconversion emission)

    Novel light management techniques for thin film solar cells: Nanotextured substrates and transparent conducting upconverters

    Get PDF
    [eng] The objective of this work was to study two different light management approaches to enhance the efficiency of thin film Si solar cells and these were the manipulation of the light path (light trapping) and changing the incoming photon energy (upconversion). In the first approach the light path was manipulated by creating either periodic or random textured interfaces. Periodic patterns were created at the front AZO by means of direct laser ablation. Amongst all the patterns assessed, the best result was achieved with a linear pattern of 10 lam of pitch and 360 nm of groove depth, that yielded to an Rs of 11 SI/sq and a haze of 12.7% at 600 nm. However structures in the sub-micrometer range cannot be created because the minimum period is limited by the laser spot. By means of the Aluminum Induced Texturing method (AIT) random textures were performed on glass substrates. In this method, a thin Al film is deposited onto a glass substrate and a redox reaction between the Al and the SiO2 of the glass is induced by high temperature annealing. The reaction products are wet-etched and the result is a uniform and rough glass surface. The process parameters were varied in order to control the resultant glass roughness and it was found that the most critical was the Al deposition method. By using evaporation smooth U-shaped craters morphology and roughness up to 90 nm were created, whereas the sputtered films resulted in rough and porous textures with roughness until 145 nm. AZO grown over the U-shape crater morphology led to a double texture with haze values above 10% at 600 nm, transparency above 84%, and Rs-7 SI/sq whereas AZO over very rough glass resulted in a cauliflower-like surface with haze values >32% at 600 nm, Rs around 9.5 SI/sq and transmittance of 74%. A-Si:H solar cells were deposited on different AIT textures and an improvement of the short circuit current, as well as a reduction of the device reflectivity was achieved in all cases in comparison to the cells deposited on smooth glass textures. The second approach was to create a transparent and conducting upconverter to be used on top of the rear reflector of a thin film Si solar cell. For that purpose, ZnO was doped with Er and Yb ions and was post-annealed under different treatments. The unique spectral properties of rare earth (RE) elements due to their electronic configuration occur as a result of their intra 4f-4f shell transitions. In the case of Er, its excitation takes places at 1500 nm and 980 nm and the upconverted photons are emitted within the Si absorption range. Moreover, codoping with Yb can enhance the Er visible emission because they cooperate together due to the matching of their energy levels for k=980 nm. As deposited ZnO doped with rare earths (RE) was found to be transparent and conducting but not luminescent. RE ions need to be surrounded by 6 oxygen in a distorted octahedron to be optically active and REs replacing zinc in the ZnO lattice do not present this symmetry; hence, a post deposition treatment is needed. When the films were post-annealed in air, visible upconversion (UC) was seen at 660 nm under 980 nm laser excitation, however, the films become almost insulating. When the films were annealed in vacuum, lower UC luminescence was achieved, and the resistivity increased 1 order of magnitude. By using CW laser radiation, the electrical properties were maintained and high UC was observed. UC came from clusters of RE06 as well as from RE203 inside or outside the matrix. When annealing in air, in vacuum or by laser radiation, oxygen from the atmosphere bound to the RE to form RE oxides and/or RE06 complexes but just laser annealing was able to preserve the conductivity while producing optically active centers.[cat] L'objectiu d'aquesta tesi és la millora de l'eficiència de les cèl•lules solars de silici en capa prima mitjançant l'estudi de nous mètodes per a l'aprofitament de la llum solar al dispositiu. El primer mètode consisteix en texturar el substrat de vidre per dispersar la llum incident i així incrementar l'absorció en la capa activa. El mètode emprat es la texturització induïda per alumini (AIT); que es basa en una reacció de reducció no uniforme entre el vidre i una capa prima d'alumini gràcies a un tractament tèrmic. Posteriorment els productes de la reacció s'eliminen mitjançant una solució basada en àcid i el resultat és un vidre transparent i texturat. S'ha fet un estudi de la rugositat en funció dels paràmetres del procés i s'ha aconseguit obtenir rugositats controlades i uniformes en superfícies de fins a 10x 10 cm2. Diferents textures s'han provat en cèl.lules solars de silici amorf i s'ha demostrat l'eficàcia d'aquestes en la millora del corrent respecte a les mateixes cèl•lules dipositades sobre vidre pla. El segon mètode estudiat és el fenomen de l'up-conversion que consisteix en la conversió de fotons de baixa energia (EEg) que podran ser absorbits en la zona activa; així doncs s'ha intentat fer una capa conductora, transparent i amb propietats d'up-conversion per utilitzar com a contacte per a cèl• lules solars. Per aquest propòsit s'han estudiat capes conductores i transparents d'òxid de zinc dopat amb erbi i iterbi dipositades per polvorització catòdica sobre vidre. Com que les terres rares han d'estar envoltades d'oxigen per actuar com a centres òptics actius, i en les capes de ZnO:Er:Yb no es dóna aquesta configuració, les capes s'han hagut de sotmetre a diferents tractaments tèrmics, com escalfament en aire, en buit o escalfament amb làser. Escalfant en aire o en buit s'aconsegueix obtenir up-conversion però la conductivitat disminueix notablement, en canvi, escalfant amb radiació làser es possible de mantenir les propietats elèctriques i a més, activar òpticament les terres rares
    corecore