211 research outputs found

    Recent discoveries in colloidal nanoplasmonics

    Get PDF
    Nanoplasmonics can be defined as the control of the flow of light by objects that are smaller than the light wavelength. The most common nanomaterials for nanoplasmonics are metal nanoparticles, which display intense absorption and scattering in the visible and near-IR due to localized surface plasmon resonances (LSPR). Such resonances can be tuned through the size and shape of the nanoparticles, and therefore optimization of fabrication methods has been an active area of research, where many concepts are still under debate and monodispersity is still an issue, meaning that non-specific broadening of the LSPR bands is thought to be inherent to colloidal systems. Recent progress toward improving synthesis of “optically monodisperse” plasmonic colloids will be presented. On the other hand, the assembly of nanoparticle building blocks can be exploited toward the amplification of the properties of the components and/or the generation of new features unique to the ensemble. A novel concept has been recently reported in which mixed nanoparticle (e.g. gold and iron oxide) mono- and multi-layers can be generated as crystal-like films on top of a liquid. Upon removal of the iron oxide particles, a lattice of gold nanoparticles remains with a specific internal architecture. Among numerous other applications, these open crystalline structures may help creating porous films with a mesh of predefined holes where analytes can be trapped and identified by SERS.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Microgels and nanoparticles: Where Micro and Nano Go Hand in Hand

    Full text link
    The integration of different types of materials in a single hybrid system allows the combination of multiple functionalities, which can even be used in conjunction with each other. This strategy has been exploited in nanoscale systems for the creation of so-called smart nanomaterials. Within this category, the combination of inorganic nanoparticles with stimuli-responsive microgels is of very high interest because of the wide variety of potential applications. We present here a short overview of this type of materials in which the nano-and micro-scales get nicely integrated, with a great potential to expand the range of technological applications. We focus mainly on the integration of metal nanoparticles, either by themselves or in combination with semiconductor and magnetic nanoparticles. Various examples of the synergic properties that can be obtained are described, as well as the possibility to extract useful information when optical tweezers are used to manipulate single particles. We expect that this review will stimulate additional research in this fieldThis work was partly supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo

    Cellular uptake of nanoparticles versus small molecules : a matter of size

    Get PDF
    The primary function of the cell membrane is to protect cells from their surroundings. This entails a strict regulation on controlling the exchange of matter between the cell and its environment. A key factor when considering potential biological applications of a particular chemical structure has to do with its ability to internalize into cells. Molecules that can readily cross cell membranes are frequently needed in biological research and medicine, since most therapeutic entities are designed to modulate intracellular components. However, the design of molecules that do not penetrate cells is also relevant toward, for example, extracellular contrast agents, which are most widely used in clinical diagnosis.Small molecules have occupied the forefront of biomedical research until recently, but the past few decades have seen an increasing use of larger chemical structures, such as proteins or nanoparticles, leading to unprecedented and often unexpectedly novel research. Great achievements have been made toward understanding the rules that govern cellular uptake, which show that cell internalization of molecules is largely affected by their size. For example, macromolecules such as proteins and nucleic acids are usually unable to internalize cells. Intriguingly, in the case of nanoparticles, larger sizes seem to facilitate internalization via endocytic pathways, through which the particles remain trapped in lysosomes and endosomes.In this Account, we aimed at presenting our personal view of how different chemical structures behave in terms of cell internalization due to their size, ranging from small drugs to large nanoparticles. We first introduce the properties of cell membranes and the main mechanisms involved in cellular uptake. We then discuss the cellular internalization of molecules, distinguishing between those with molecular weights below 1 kDa and biological macromolecules such as proteins and nucleic acids. In the last section, we review the biological behavior of nanoparticles, with a special emphasis on plasmonic nanoparticles, which feature a high potential in the biomedical field. For each group of chemical structures, we discuss the parameters affecting their cellular internalization but also strategies that can be applied to achieve the desired intracellular delivery. Particular attention is paid to approaches that allow conditional regulation of the cell internalization process using external triggers, such as activable cell penetrating peptides, due to the impact that these systems may have in drug delivery and sensing applications. The Account ends with a "Conclusions and Outlook" section, where general lessons and future directions toward further advancements are briefly presented

    Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping

    Full text link
    Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during Galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during Galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence leading to new insights in the understanding of the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures

    Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations

    Get PDF
    Surface-enhanced Raman scattering (SERS) has become a widely used spectroscopic technique for chemical identification, providing unbeaten sensitivity down to the singlemolecule level. The amplification of the optical near field produced by collective electron excitations plasmons in nanostructured metal surfaces gives rise to a dramatic increase by many orders of magnitude in the Raman scattering intensities from neighboring molecules. This effect strongly depends on the detailed geometry and composition of the plasmonsupporting metallic structures. However, the search for optimized SERS substrates has largely relied on empirical data, due in part to the complexity of the structures, whose simulation becomes prohibitively demanding. In this work, we use state-of-the-art electromagnetic computation techniques to produce predictive simulations for a wide range of nanoparticle-based SERS substrates, including realistic configurations consisting of random arrangements of hundreds of nanoparticles with various morphologies. This allows us to derive rules of thumb for the influence of particle anisotropy and substrate coverage on the obtained SERS enhancement and optimum spectral ranges of operation. Our results provide a solid background to understand and design optimized SERS substrates.Peer ReviewedPostprint (published version

    Reducing protein corona formation and enhancing colloidal stability of gold nanoparticles by capping with silica monolayers

    Get PDF
    A study demonstrated the reducing of protein corona (PC) formation and enhancing colloidal stability of gold nanoparticles (Au NP) by capping with silica monolayers. Au NP surface was needed to achieve silica monolayer formation. In a first attempt to have a high density ligand coverage around NS-1, an excess of 3-mercaptopropyltrimethoxysilane (MPTMS) was directly added to a Au NP hydrosol, but this resulted in immediate aggregation. The resulting trimethoxysilane moiety covering the surface of NS-3 was subsequently hydrolyzed by addition of 5 mM NaOH in a 2:1 methanol/water mixture, yielding a polymeric monolayer

    Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation

    No full text
    Microdroplets have been used as reactors for the fabrication of agarose beads with high uniformity in shape and size, and densely loaded with silver ions, which were subsequently reduced into nanoparticles using hydrazine. The resulting nanocomposite beads not only display a high plasmonic activity, but can also trap/concentrate analytes, which can be identified by means of surface-enhanced Raman scattering (SERS) spectroscopy. The size of the beads is such that it allows the detection of a single bead under a conventional optical microscope, which is very useful to reduce the amount of material required for SERS detectio

    Correlation between Spectroscopic and Mechanical Properties of Gold Nanocrystals under Pressure

    Get PDF
    The effects of nonhydrostatic pressure on the morphology and stability of gold nanorods (AuNRs) and nanospheres (AuNSs) in 4:1 methanol-ethanol mixtures were studied by optical absorption spectroscopy and transmission electron microscopy at pressures of up to 23 and 30 GPa, respectively. Solvent solidification and associated nonhydrostatic stresses were found to have a negligible effect on the shape and size of AuNSs. On the contrary, while AuNRs maintained their initial morphology in the hydrostatic range, the uniaxial stress component induced under nonhydrostatic conditions had a shearing effect on the AuNRs, breaking them into smaller particles. Interestingly, colloidal stability was maintained in all cases, and the particles showed no sign of aggregation, despite the severe nonhydrostatic conditions to which both AuNR and AuNS colloids were subjected.Financial support from Projects PGC2018-101464−B-I00 (Ministerio de Ciencia, Innovación y Universidades) and MALTA-Consolider Team (RED2018-102612-T) is acknowledged. We acknowledge J. A. Barreda-Argüeso and J. RuizFuertes for support with high-pressure measurements. P.M. thanks the ARC for grant CE170100026. L.M.L.-M. acknowledges grant PID2020-117779R and the Maria de Maeztu Units of Excellence Program (grant MDM-2017-0720) from the Spanish Ministerio de Ciencia e Innovación
    corecore