8,182 research outputs found
Experiment MA-028 crystal growth
A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number
Multiaxial analyzer detects low-energy electrons
Three curved plate energy analyzers coupled with three electron multiplier tubes detect and measure low energy electron flux in several directions simultaneously
Follow up on the crystal growth experiments of the LDEF
The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution
Complexity and non-separability of classical Liouvillian dynamics
We propose a simple complexity indicator of classical Liouvillian dynamics,
namely the separability entropy, which determines the logarithm of an effective
number of terms in a Schmidt decomposition of phase space density with respect
to an arbitrary fixed product basis. We show that linear growth of separability
entropy provides stricter criterion of complexity than Kolmogorov-Sinai
entropy, namely it requires that dynamics is exponentially unstable, non-linear
and non-markovian.Comment: Revised version, 5 pages (RevTeX), with 6 pdf-figure
Knowledge is power: A theory of information, income and welfare spending
No voters cast their votes based on perfect information, but better educated and richer voters are on average better informed than others. We develop a model where the voting mistakes resulting from low political knowledge reduce the weight of poor voters, and cause parties to choose political platforms that are better aligned with the preferences of rich voters. In US election survey data, we find that income is more important in affecting voting behavior for more informed voters than for less informed voters, as predicted by the model. Further, in a panel of US states we find that when there is a strong correlation between income and political information, Congress representatives vote more conservatively, which is also in line with our theory.Political Economics
The interstellar gas experiment
The Interstellar Gas Experiment (IGE) exposed thin metallic foils to collect neutral interstellar gas particles. These particles penetrate the solar system due to their motion relative to the sun. Thus, it is possible to entrap them in the collecting foils along with precipitating magnetospheric and perhaps some ambient atmospheric particles. For the entire duration of the Long Duration Exposure Facility (LDEF) mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectroscopic analysis of the noble gas component of these particles, we have detected the isotopes of He-3, He-4, Ne-20, and Ne-22. In the foil analyses carried out so far, we find a distribution of particle arrival directions which shows that a significant part of the trapped particles are indeed interstellar atoms. The analysis needed to subtract the competing fluxes of magnetospheric and atmospheric particles is still in progress
A shared mechanism of muscle wasting in cancer and Huntington's disease.
Skeletal muscle loss and dysfunction in aging and chronic diseases is one of the major causes of mortality in patients, and is relevant for a wide variety of diseases such as neurodegeneration and cancer. Muscle loss is accompanied by changes in gene expression and metabolism that lead to contractile impairment and likely affect whole-body metabolism and function. The changes may be caused by inactivity, inflammation, age-related factors or unbalanced nutrition. Although links with skeletal muscle loss have been found in diseases with disparate aetiologies, for example both in Huntingtons disease (HD) and cancer cachexia, the outcome is a similar impairment and mortality. This short commentary aims to summarize recent achievements in the identification of common mechanisms leading to the skeletal muscle wasting syndrome seen in diseases as different as cancer and HD. The latter is the most common hereditary neurodegenerative disorder and muscle wasting is an important component of its pathology. In addition, possible therapeutic strategies for anti-cachectic treatment will be also discussed in the light of their translation into possible therapeutic approaches for HD
Epitaxial growth of single crystal films
An experiment in gallium arsenide liquid phase epitaxy was performed successfully on the SPAR 6 flight October 17, 1979. The design, fabrication, and testing of the experimental apparatus, and the performance and results of the experiment are discussed
The Interstellar Gas Experiment: Analysis in progress
The Interstellar Gas Experiment (IGE) exposed thin metallic foils aboard the LDEF spacecraft in low Earth orbit in order to collect neutral interstellar particles which penetrate the solar system due to their motion relative to the sun. By mechanical penetration these atoms were imbedded in the collecting foils along with precipitating magnetospheric ions and, possibly, with ambient atmospheric atoms. During the entire LDEF mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. After the foils were returned to Earth, a mass spectrometric analysis of the noble gas component of the trapped particles was begun. The isotopes of He-3, He-4, Ne-20, and Ne-22 were detected. We have given a first account of the experiment. In order to infer the isotopic ratios in the interstellar medium from the concentrations found in the foils, several lines of investigation had to be initiated. The flux of ambient atmospheric noble gas atoms moving toward the foils due to the orbital motion of LDEF was estimated by detailed calculations. Any of these particles which evaded the baffles in the IGE collector could be entrapped in the foils as a background flux. However, the calculations have shown that this flux is negligible, which was the intent of the experiment hardware design. This conclusion is supported by the measurements. However, both the concentration of trapped helium and its impact energy indicate that the flux of magnetospheric ions which was captured was larger than had been expected. In fact, it appears that the magnetospheric particles constitute the largest fraction of the particles in the foils. Since little is known about this particle flux, their presence in the IGE foils appears fortunate. The analysis of these particles provides information about their isotropic composition and average flux
Recommended from our members
Linking metacognition and mindreading: Evidence from autism and dual-task investigations
Questions of how we know our own and other minds, and whether metacognition and mindreading rely on the same processes, are longstanding in psychology and philosophy. In Experiment 1, children/adolescents with autism (who tend to show attenuated mindreading) showed significantly lower accuracy on an explicit metacognition task than neurotypical children/adolescents, but not on an allegedly metacognitive implicit one. In Experiment 2, neurotypical adults completed these tasks in a single-task condition, or a dual-task condition that required concurrent completion of a secondary task that tapped mindreading. Metacognitive accuracy was significantly diminished by the dual-mindreading-task on the explicit task, but not the implicit task. In Experiment 3, we included additional dual-tasks to rule out the possibility that any secondary task (regardless of whether it required mindreading) would diminish metacognitive accuracy. Finally, in both experiments 1 and 2, metacognitive accuracy on the explicit task, but not the implicit task, was associated significantly with performance on a measure of mindreading ability. These results suggest that explicit metacognitive tasks (used frequently to measure metacognition in humans) share metarepresentational processing resources with mindreading, whereas implicit tasks (which are claimed by some comparative psychologists to measure metacognition in non-human animals) do not
- …