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COMMENTARY

A shared mechanism of muscle wasting 
in cancer and Huntington’s disease
Michal Mielcarek* and Mark Isalan

Abstract 

Skeletal muscle loss and dysfunction in aging and chronic diseases is one of the major causes of mortality in patients, 
and is relevant for a wide variety of diseases such as neurodegeneration and cancer. Muscle loss is accompanied 
by changes in gene expression and metabolism that lead to contractile impairment and likely affect whole-body 
metabolism and function. The changes may be caused by inactivity, inflammation, age-related factors or unbalanced 
nutrition. Although links with skeletal muscle loss have been found in diseases with disparate aetiologies, for exam-
ple both in Huntington’s disease (HD) and cancer cachexia, the outcome is a similar impairment and mortality. This 
short commentary aims to summarize recent achievements in the identification of common mechanisms leading to 
the skeletal muscle wasting syndrome seen in diseases as different as cancer and HD. The latter is the most common 
hereditary neurodegenerative disorder and muscle wasting is an important component of its pathology. In addition, 
possible therapeutic strategies for anti-cachectic treatment will be also discussed in the light of their translation into 
possible therapeutic approaches for HD.
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Background
Huntington’s disease (HD) is the most common mono-
genic neurodegenerative disorder, affecting approxi-
mately 1 in 10,000 people worldwide [1]. It is invariably 
fatal and there is no approved treatment that targets the 
molecular cause of the disease. This disorder has been 
primarily characterized by choreiform movements, psy-
chiatric symptoms and slowly progressive dementia. 
Consequently, brain pathology has been recognised as 
the major hallmark of HD; for a review see [2]. On the 
molecular level, HD is caused by the expansion of a poly-
glutamine stretch within the huntingtin protein (HTT). 
This mutation leads to an extra-long tract of glutamines 
within the HTT that causes the huntingtin protein to 
aggregate [3]. The genetic mutation within the huntingtin 
locus (HTT) leads to a widespread neurodegeneration, 
particularly in the striatal nuclei, basal ganglia and cer-
ebral cortex in humans.

Importantly, although HD is widely thought of as solely 
a neurological disease, recent studies have emphasized 
detrimental pathologies that occur within peripheral tis-
sues, identifying them as an important component of HD 
pathogenesis. Peripheral pathologies include HD-related 
cardiomyopathy [4–6] or skeletal muscle malfunction; for 
a review see [7]. Muscle malfunction is not only a well-
documented symptom of HD but is also apparent for 
other neurodegenerative disorders such as spinal cerebel-
lar ataxia-17 (SCA17) [8], Alzheimer’s disease [9] and in 
a mouse model of stroke [10]. Therefore, despite the fact 
that HD is still recognised principally as a neurological 
disease, peripheral pathologies including skeletal muscle 
malfunctions might significantly contribute to the overall 
progression of HD.

A shared mechanism of muscle syndrome in HD  
and cancer cachexia
Muscle wasting syndrome is a well-documented symp-
tom, manifested by molecular and physiological changes 
that can be detected even in pre-symptomatic HD indi-
viduals; for a review see [7]. Our recent study clearly 

Open Access

*Correspondence:  mielcarekml@gmail.com; m.mielcarek@imperial.ac.uk 
Department of Life Sciences, Imperial College London, Sir Alexander 
Fleming Building (SAF), London SW7 2AZ, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-015-0076-z&domain=pdf


Page 2 of 4Mielcarek and Isalan ﻿Clin Trans Med  (2015) 4:34 

identified a progressive skeletal muscle atrophy, demon-
strated by mass decline in all type skeletal muscles, in two 
well-characterised and widely studied mouse models of 
HD: R6/2 and HdhQ150 [11]. Similarly, the C26 cachec-
tic mouse model [mice bearing colon-26 (C-26) tumors] 
developed an atrophy of both glycolytic and oxidative 
fibres [12], followed by a decline in grip strength and 
rotarod performance [13]. In HD models, this was accom-
panied by the contractile dysfunction of the hind limb 
muscles, tibialis anterior (TA) and extensor digitorum 
longus (EDL), followed by a significant loss of motor units. 
In addition, these functional muscle impairments were 
accompanied by an aberrant deregulation of contractile 
protein transcripts and their up-stream transcriptional 
regulators [11]. There was also a significant reduction in 
muscle force, likely due to an energy metabolism imbal-
ance and decreased oxidation, in both fast and slow types 
of skeletal muscle fibres [11]. In general, it is believed that 
mitochondrial dysfunction and energy deficits underline 
HD pathology; for a review see [14]. Our results were in 
line with a previous study in the R6/2 mouse model that 
showed increased levels of circulating markers of muscle 
injury in the serum and a reduction of contractile tran-
scripts [15]. It is interesting to compare these results to 
those found in cancer cachexia; animal models of urothe-
lial carcinoma or Lewis lung carcinoma showed decreased 
respiratory chain activity [16] and a lower level of ATP 
[17], respectively, similarly to HD mouse models [11].

Interestingly, HD-related skeletal muscle syndrome 
has been directly correlated to the malfunction of the 
histone deacetylase 4 (HDAC4)–dachshund homolog 2 
(DACH2)–myogenin axis and is thus linked to transcrip-
tional dysregulation. HDAC4 has already been identi-
fied as a molecular target of muscle dysfunction and has 
been linked to disease progression in amyotrophic lat-
eral sclerosis (ALS) [18, 19] and spinal muscular atrophy 
(SMA) [20]. There is also strong evidence that the genetic 
reduction of HDAC4 in skeletal muscle can contribute 
to an overall improvement of HD phenotypes [21, 22]. 
Although HDAC4 function in muscle remodelling has 
been well-established in various models of neurodegener-
ative disorders (see [23] for a review), there is no evidence 
so far that HDAC4 can play a similar detrimental function 
in cancer cachexia. On the other hand, an elegant study 
clearly identified the HDAC4-activated [24] transcrip-
tion factor paired box 7 (Pax-7) as sufficient for inducing 
atrophy in normal muscle [25]. Furthermore, the reduc-
tion of Pax7, or the exogenous addition of its downstream 
targets, like MyoD, reversed muscle wasting by restoring 
cell differentiation and fusion, under tumor conditions. 
Interestingly, Pax7 was induced by serum factors from 
cachectic mice or patients, in an Nuclear Factor kappa 
B (NFκB)-dependent manner, both in  vitro and in  vivo. 

Together, these data suggest that circulating cachectic fac-
tors induce muscle damage and activation of satellite cells 
at an early stage of cachexia development, by perturb-
ing transcription networks [25]. However, such pathways 
have not been validated in HD mouse models thus far.

In fact, the source of skeletal muscle wasting in HD has 
not yet been identified. On the one hand, wide-spread 
neurodegeneration including that of the hypothalamus 
could be a cause of muscle malfunction. However, it is 
also possible that an intrinsic component of the HTT 
mutant gene product, expressed within muscle cells, 
might directly lead to pathogenic consequences. In addi-
tion, it has been shown that R6/2 mice had elevated levels 
of NFκB pathways that may be involved in muscle atro-
phy [15]. Similarly, increased levels of pro-inflammatory 
cytokines like tumor necrosis factors (TNF) and inter-
leukin 1 (IL-1), caused by dysfunction of hypothalamic 
serotonergic neurons, have been implicated in cancer 
cachexia [26]. It has been clearly demonstrated that injec-
tion of IL-1 into the hypothalamus causes a significant 
change in gene expression in skeletal muscle within hours, 
leading to their degradation [27]. Thus, it is likely that a 
combination of dysregulated cytokines and transcription 
regulators come together to achieve the common result of 
muscle wasting, in both HD and cancer cachexia.

Conclusions
Therapeutic strategies for targeting muscle wasting
It is becoming more widely accepted that therapeutic 
approaches in HD should not only be restricted to target-
ing the brain pathology but also major efforts should be 
made to understand the related peripheral pathologies, 
including those of skeletal muscles. Here, major insights 
may be gained by examining research in the field of can-
cer cachexia.

In cancer cachexia, the most promising therapeu-
tic approach is based on the inhibition of the myosta-
tin pathway to rescue muscle loss. Myostatin promotes 
skeletal muscle wasting in different catabolic condi-
tions, including cancer [28] and it has been shown to 
be secreted by cancer cells [29]. In fact, inactivation of 
myostatin by treatment with a soluble form of activin 
receptor IIB (sACTRIIB) ablated the symptoms of can-
cer cachexia in mice bearing Lewis lung carcinoma [30]. 
The other promising therapeutic approach is based on 
the activity of the transcription factor phospho-signal 
transducer and activator of transcription 3 (p-Stat3) and, 
indeed, its inhibition with a small molecule chemical led 
to improvements of muscle mass losses, increased body 
weight and grip strength in both Lewis lung carcinoma 
and C-26 tumor mouse models [31]. Muscle atrophy has 
been also linked to the forkhead box O3 (Foxo-3) tran-
scription factor and its overexpression in skeletal muscle 
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was sufficient to induce dramatic skeletal muscle wasting 
[32]. Conversely, inhibition of Foxo genes spared muscle 
loss in a mouse model of cancer cachexia [33].

Based on the above, it will be vital to dissect whether 
promising therapeutic approaches in the cancer cachexia 
mouse models could be beneficial in HD, as they may 
well share common features of muscle wasting syndrome 
(Fig.  1). Despite these common features, it will still be 
vital to understand the specific mechanisms leading to 
HD-related striated muscle pathology, in pre-clinical and 
clinical settings. For example, HDAC4 reduction expands 
the life span of the very aggressive R6/2 HD mouse model 
by approximately 20  %, and clearly offers a promising 
alternative therapeutic target which needs to be further 
characterised, not only in the CNS but also in skeletal 
muscle [21, 22], since HDAC4 has also been linked to 
muscle ageing in humans [34]. By considering the role of 
muscle wasting in hitherto unconnected diseases, it will 
likely be possible to shape future therapeutic strategies 
for a wide range of pathologies.
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