37,511 research outputs found

    On Optimality of Myopic Policy for Restless Multi-armed Bandit Problem with Non i.i.d. Arms and Imperfect Detection

    Full text link
    We consider the channel access problem in a multi-channel opportunistic communication system with imperfect channel sensing, where the state of each channel evolves as a non independent and identically distributed Markov process. This problem can be cast into a restless multi-armed bandit (RMAB) problem that is intractable for its exponential computation complexity. A natural alternative is to consider the easily implementable myopic policy that maximizes the immediate reward but ignores the impact of the current strategy on the future reward. In particular, we develop three axioms characterizing a family of generic and practically important functions termed as gg-regular functions which includes a wide spectrum of utility functions in engineering. By pursuing a mathematical analysis based on the axioms, we establish a set of closed-form structural conditions for the optimality of myopic policy.Comment: Second version, 16 page

    Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging

    Get PDF
    Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores

    On Optimality of Myopic Sensing Policy with Imperfect Sensing in Multi-channel Opportunistic Access

    Full text link
    We consider the channel access problem under imperfect sensing of channel state in a multi-channel opportunistic communication system, where the state of each channel evolves as an independent and identically distributed Markov process. The considered problem can be cast into a restless multi-armed bandit (RMAB) problem that is of fundamental importance in decision theory. It is well-known that solving the RMAB problem is PSPACE-hard, with the optimal policy usually intractable due to the exponential computation complexity. A natural alternative is to consider the easily implementable myopic policy that maximizes the immediate reward but ignores the impact of the current strategy on the future reward. In this paper, we perform an analytical study on the optimality of the myopic policy under imperfect sensing for the considered RMAB problem. Specifically, for a family of generic and practically important utility functions, we establish the closed-form conditions under which the myopic policy is guaranteed to be optimal even under imperfect sensing. Despite our focus on the opportunistic channel access, the obtained results are generic in nature and are widely applicable in a wide range of engineering domains.Comment: 21 pages regular pape

    Nonexistence of Entanglement Sudden Death in High NOON States

    Full text link
    We study the dynamics of entanglement in continuous variable quantum systems (CVQS). Specifically, we study the phenomena of Entanglement Sudden Death (ESD) in general two-mode-N-photon states undergoing pure dephasing. We show that for these states, ESD never occurs. These states are generalizations of the so-called High NOON states, shown to decrease the Rayleigh limit of lambda to lambda/N, which promises great improvement in resolution of interference patterns if states with large N are physically realized. However, we show that in dephasing NOON states, the time to reach V_crit, critical visibility, scales inversely with N^2. On the practical level, this shows that as N increases, the visibility degrades much faster, which is likely to be a considerable drawback for any practical application of these states.Comment: 4 pages, 1 figur

    Malate Dehydrogenase and Tetrazolium Oxidase of Scyphistomae of Aurelia-aurita, Chrysaora-quinquecirrha, and Cyanea-capillata (Scyphozoa-Semaeostomeae)

    Get PDF
    Three species of scyphozoan jellyfishes, Aurelia aurita (LINNAEUS 1758), Chry- saora quinquecirrha (Desor 1848), and Cyanea capillata (LINNAEUS 1758) are commonly found in Chesapeake Bay. Because of the uncertainty in the identification of jellyfish scyphistomae (polyps) collected from the field, CALDER (1971) used the nematocyst complement for distinguishing polyps of these different species. BURNETT & GOULD (1971) used an immunological assay to differentiate polyps of Aurelia aurita and Chrysaora quinquecirrha from those of Cyanea capillata. In this study, the MDH and tetrazolium oxidase (TO) isozyme patterns of the polyps of Chesapeake Bay Aurelia aurita, Chrysaora quinquecirrha, and Cyanea capitlata are reported. These isozyme patterns provide another method for distin- guishing scyphozoan polyps of uncertain identity

    Development Model of Higher Education Cluster in Chengdu and Chongqing

    Get PDF
    This study endeavors to investigate the influencing factors behind the development of higher education clusters in the Chengdu-Chongqing region and establish a model aimed at enhancing their effectiveness. To achieve this objective, a Likert Scale was employed, comprising four primary dimensions, 14 secondary dimensions, and 39 items, initially validated through a pre-survey and SPSS software analysis. Subsequently, 405 valid questionnaires were collected from government officials, university administrators, and business leaders in the Chengdu-Chongqing region through an online platform and email. SmartPLS software was then used for analysis, confirming strong reliability and discriminant validity of the survey data. Further structural analysis revealed no issues of collinearity and identified government, universities, and enterprises as positively influencing factors on the Chengdu-Chongqing higher education cluster’s effectiveness. Eight secondary dimensions and 17 items were identified as positively impacting cluster effectiveness, leading to the formulation of a government-university-enterprise model for higher education cluster development in the Chengdu-Chongqing region

    Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data

    Get PDF
    Studies indicate greenhouse gas emissions following permafrost thaw will amplify current rates of atmospheric warming, a process referred to as the permafrost carbon feedback. However, large uncertainties exist regarding the timing and magnitude of the permafrost carbon feedback, in part due to uncertainties associated with subsurface permafrost parameterization and structure. Development of robust parameter estimation methods for permafrost-rich soils is becoming urgent under accelerated warming of the Arctic. Improved parameterization of the subsurface properties in land system models would lead to improved predictions and a reduction of modeling uncertainty. In this work we set the groundwork for future parameter estimation (PE) studies by developing and evaluating a joint PE algorithm that estimates soil porosities and thermal conductivities from time series of soil temperature and moisture measurements and discrete in-time electrical resistivity measurements. The algorithm utilizes the Model-Independent Parameter Estimation and Uncertainty Analysis toolbox and coupled hydrological-thermal-geophysical modeling. We test the PE algorithm against synthetic data, providing a proof of concept for the approach. We use specified subsurface porosities and thermal conductivities and coupled models to set up a synthetic state, perturb the parameters, and then verify that our PE method is able to recover the parameters and synthetic state. To evaluate the accuracy and robustness of the approach we perform multiple tests for a perturbed set of initial starting parameter combinations. In addition, we varied types and quantities of data to better understand the optimal dataset needed to improve the PE method. The results of the PE tests suggest that using multiple types of data improve the overall robustness of the method. Our numerical experiments indicate that special care needs to be taken during the field experiment setup so that (1) the vertical distance between adjacent measurement sensors allows the signal variability in space to be resolved and (2) the longer time interval between resistivity snapshots allows signal variability in time to be resolved
    • …
    corecore