33 research outputs found
Synthesis and a study of the 13C NMR spectroscopic properties of positional isomers of some C18 acetylenic thia fatty esters
The carbon magnetic resonance spectra of four positional acetylenic thia fatty acid methyl ester isomers have been recorded to investigate the effect of the sulfur atom on the chemical shifts of the carbon nuclei adjacent to it.published_or_final_versio
Heterologous expression of a thermophilic diacylglycerol acyltransferase triggers triglyceride accumulation in Escherichia coli
Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3- fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids
Analysis of conjugated linoleic acid esters by nuclear magnetic resonance spectroscopy
link_to_subscribed_fulltex
Enzymatic renrichment of C20 cis-5 polyunsaturated fatty acids from biota orientalis seed oil
Enrichment ofcis-5 polyunsaturated fatty acids [20:3(5c,11c,14c), 4.3% and 20:4(5c,11c,14c,17c), 11.3%] fromBiota orientalis seed oil was carried out by lipase-catalyzed selective esterification and hydrolysis reactions. Lipases fromRhizomucor miehei (Lipozyme),Candida cylindracea and porcine pancreas were used. Lipozyme-catalyzed esterification ofBiota fatty acids withn-butanol inn-hexane allowed 20:3 and 20:4 (as fatty acids) to be enriched to a maximum level of 52.9%, and in the presence ofC. cylindracea lipase 61.5% enrichment was achieved. Esterification with pancreatic lipase was poor with low levels of enrichment of 20:3
and 20:4 (22%). A multigram scale esterification of the free fatty acids fromBiota seed oil by repeated treatment of the isolated fatty acid fraction withn-butanol inn-hexane in the presence ofC. cylindracea lipase furnished an enrichment yield of 72.5% of a mixture of 20:3 and 20:4 fatty acids. Urea fractionation of the free fatty
acids ofBiota oil gave an initial enriched fraction of 20:3 (9.5%) and 20:4 (25.2%) which, upon treatment withC. cylindracea lipase inn-butanol andn-hexane, gave an enriched fraction of 85.3% of 20:3 and 20:4 fatty acids. Partial hydrolysis of the triglycerides ofBiota oil byC. cylindracea lipase in potassium phosphate buffer at 25°C resulted in a 2.8-fold enrichment ofcis-5 polyunsaturated fatty acids (40.8% of 20:3 and 20:4) as contained in the unhydrolyzed acylglycerol fractions
Enzymatic renrichment of C20 cis-5 polyunsaturated fatty acids from biota orientalis seed oil
Enrichment ofcis-5 polyunsaturated fatty acids [20:3(5c,11c,14c), 4.3% and 20:4(5c,11c,14c,17c), 11.3%] fromBiota orientalis seed oil was carried out by lipase-catalyzed selective esterification and hydrolysis reactions. Lipases fromRhizomucor miehei (Lipozyme),Candida cylindracea and porcine pancreas were used. Lipozyme-catalyzed esterification ofBiota fatty acids withn-butanol inn-hexane allowed 20:3 and 20:4 (as fatty acids) to be enriched to a maximum level of 52.9%, and in the presence ofC. cylindracea lipase 61.5% enrichment was achieved. Esterification with pancreatic lipase was poor with low levels of enrichment of 20:3
and 20:4 (22%). A multigram scale esterification of the free fatty acids fromBiota seed oil by repeated treatment of the isolated fatty acid fraction withn-butanol inn-hexane in the presence ofC. cylindracea lipase furnished an enrichment yield of 72.5% of a mixture of 20:3 and 20:4 fatty acids. Urea fractionation of the free fatty
acids ofBiota oil gave an initial enriched fraction of 20:3 (9.5%) and 20:4 (25.2%) which, upon treatment withC. cylindracea lipase inn-butanol andn-hexane, gave an enriched fraction of 85.3% of 20:3 and 20:4 fatty acids. Partial hydrolysis of the triglycerides ofBiota oil byC. cylindracea lipase in potassium phosphate buffer at 25°C resulted in a 2.8-fold enrichment ofcis-5 polyunsaturated fatty acids (40.8% of 20:3 and 20:4) as contained in the unhydrolyzed acylglycerol fractions
An efficient ultrasound-assisted zinc reduction of fatty esters containing conjugated enynol and conjugated enynone systems
Reduction of methyl 8-hydroxy-11-E/Z-octadecen-9-ynoate (1) with zinc in either aqueous n-propanol or water under concomitant ultrasound irradiation furnished a mixture of methyl 8-hydroxy-9Z,11E-octadecadienoate (3a) and methyl 8-hydroxy-9Z, 11Z-octadecadienoate (3b) (96% yield). Reduction of methyl 8-oxo-11-E/Z-octadecen-9-ynoate (2) under similar conditions gave methyl 8-oxo-10-Z-octadecenoate exclusively (4, 70%). The latter compound was epoxidized and converted to a C18 furanoid fatty ester (6, methyl 8,11-epoxy-8,10-octadecadienoate) in 70% yield
Lipase-catalyzed hydrolysis of TG containing acetylenic FA
Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the Δ 6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of Δ 6, Δ 9, and Δ 13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.link_to_subscribed_fulltex
Ultrasound in fatty acid chemistry: synthesis of a novel 1-pyrroline fatty ester isomer from methyl ricinoleate
A novel 1-pyrroline fatty acid ester isomer (viz. 8-5-hexyl-1-pyrrolin-2-yl) octanoate) has been synthesized from methyl ricinoleate by two routes with an overall yield of 42 and 30%, respectively. Most of the reactions are carried out under concomitant ultrasonic irradiation (20 KHz, ca. 53 watts/cm2). Under such a reaction condition, the reaction time is considerably shortened, and product yields are high. Dehydrobromination under concomitant ultrasonic irradiation of methyl 9, 10-dibromo-12-hydroxyoctadecanoate with KOH in EtOH furnishes methyl 12-hydroxy-9-octadecynoate (66%) within 15 min. Hydration of the latter under ultrasound with mercury(II)acetate in aqueous tetrahydrofuran yields exclusively methyl 12-hydroxy-9-oxo-octadecanoate (95%) in 30 min. The hydroxy group in the latter compound is transformed to the azido function via the mesylate, and treatment of the azido-oxo intermediate (methyl 12-azido-9-oxooctadecanoate) with Ph3P under ultrasonic irradiation furnishes the requisite 1-pyrroline fatty acid ester (77%). The same azido-oxo intermediate has also been obtained by the oxidation of methyl 12-azido-9-cis-octadecenoate using benzoquinone and a catalytic amount of Pd(II)chloride in aqueous tetrahydrofuran under concomitant ultrasonic irradiation (90 min) to give the product in 45% yield. The latter reaction does not take place even under prolonged silent stirring of the reaction mixture