618 research outputs found

    Partial Sums Generation Architecture for Successive Cancellation Decoding of Polar Codes

    Full text link
    Polar codes are a new family of error correction codes for which efficient hardware architectures have to be defined for the encoder and the decoder. Polar codes are decoded using the successive cancellation decoding algorithm that includes partial sums computations. We take advantage of the recursive structure of polar codes to introduce an efficient partial sums computation unit that can also implements the encoder. The proposed architecture is synthesized for several codelengths in 65nm ASIC technology. The area of the resulting design is reduced up to 26% and the maximum working frequency is improved by ~25%.Comment: Submitted to IEEE Workshop on Signal Processing Systems (SiPS)(26 April 2012). Accepted (28 June 2013

    Partial Sums Computation In Polar Codes Decoding

    Full text link
    Polar codes are the first error-correcting codes to provably achieve the channel capacity but with infinite codelengths. For finite codelengths the existing decoder architectures are limited in working frequency by the partial sums computation unit. We explain in this paper how the partial sums computation can be seen as a matrix multiplication. Then, an efficient hardware implementation of this product is investigated. It has reduced logic resources and interconnections. Formalized architectures, to compute partial sums and to generate the bits of the generator matrix k^n, are presented. The proposed architecture allows removing the multiplexing resources used to assigned to each processing elements the required partial sums.Comment: Accepted to ISCAS 201

    Celiac Disease: A Challenging Disease for Pharmaceutical Scientists

    Get PDF
    ABSTRACT: Celiac disease (CD) is an immune-mediated enteropathy triggered by the ingestion of gluten-containing grains that affects ~1% of the white ethnic population. In the last decades, a rise in prevalence of CD has been observed that cannot be fully explained by improved diagnostics. Genetic predisposition greatly influences the susceptibility of individuals towards CD, though environmental factors also play a role. With no pharmacological treatments available, the only option to keep CD in remission is a strict and permanent exclusion of dietary gluten. Such a gluten-free diet is difficult to maintain because of gluten's omnipresence in food (e.g., additive in processed food). The development of adjuvant therapies which would permit the intake of small amounts of gluten would be desirable to improve the quality of life of patients on a gluten-free diet. Such therapies include gluten-degrading enzymes, polymeric binders, desensitizing vaccines, anti-inflammatory drugs, transglutaminase 2 inhibitors, and HLA-DQ2 blockers. However, many of these approaches pose pharmaceutical challenges with respect to drug formulation and stability, or application route and dosing interval. This perspective article discusses how pharmaceutical scientists may deal with these challenges and contribute to the implementation of novel therapeutic options for patients with C

    Active rough shape estimation of unknown objects

    Get PDF
    International audienceThis paper presents a method to determine the rough shape of an object. This is a step in the development of a One Click Grasping Tool, a grasping tool of everyday-life objects for an assistant robot dedicated to elderly or disabled. The goal is to determine the quadric that approximates at best the shape of an unknown object using multi-view measurements. Non-linear optimization techniques are considered to achieve this goal. Since multiple views are necessary, an active vision process is considered in order to minimize the uncertainty on the estimated parameters and determine the next best view. Finally, results that show the validity of the approach are presented

    Framework for context analysis and planning of an assistive robot

    Get PDF
    This paper presents the developments with the SAM robot, established in the ARMEN project. We are interested in cognitive robotics. We have developed two complementary modules. The first one deals with the representation of knowledge, while the second develops the scenario generation. Indeed, the representation of knowledge tells us about the scene, the current state of the robot and the strategy to be adopted by the robot to achieve goals specified by an assisted person. The information extracted from the knowledge representation is the starting point to generate the action plan and the implementation of the scenario by the robot

    Evaluation des risques sanitaires liés à l'injection de biogaz épure dans un réseau de gaz naturel

    Get PDF
    National audienceCe document reprend l'avis de l'Agence Française de Sécurité Sanitaire de l'Environnement et du Travail (Afsset) émis à la suite de l'expertise collective menée pour l'évaluation de risques sanitaires liés à l'injection de biogaz dans le réseau de gaz naturel. L'intégralité de cette expertise est publiée et disponible sur le site internet de l'Agence, seuls les grands axes sont présentés dans ce document. Suite aux recommandations émises par l'Afsset, des travaux ont été initiés afin de recueillir et analyser des données de composition sur le biogaz issus de boues de STEP. L'INERIS est en charge de ce projet. Par la suite, les données seront utilisées afin d'évaluer les risques accidentels (consécutifs à la valorisation du biogaz, au transport par canalisation et à la valorisation énergétique, industrielle et domestique) ; ainsi que les risques sanitaires pour les utilisateurs (consécutifs à l'injection dans le réseau de gaz naturel)

    A highly parallel Turbo Product Code decoder without interleaving resource

    No full text
    International audienceThis article presents an innovative turbo product code (TPC) decoder architecture without any interleaving resource. This architecture includes a full-parallel SISO decoder able to process n symbols in one clock period. Syntheses show the better efficiency of such an architecture compared with existing previous solutions. Considering a 6-iteration turbo decoder of a (32,26)2 BCH product code, synthetized in a 90 nm CMOS technology, the resulting information throughput is 2.5 Gb/s with an area of 233 Kgates. Finally a second architecture enhancing parallelism rate is described. The information throughput is 33.7 Gb/s while an area estimation gives A=10 mum2

    Dynamics of lymphatic regeneration and flow patterns after lymph node dissection

    Get PDF
    Knowledge about the mechanisms of regeneration of the lymphatic vasculature after surgical trauma is essential for the development of strategies for the prevention and therapy of lymphedema. However, little is known about the alterations of lymphatic flow directly after surgical trauma. We investigated lymphatic function in mice using near-infrared imaging for a period of 4weeks after surgeries that mimic sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND), by removal of the popliteal lymph node (LN) alone or together with the popliteal fat pad, respectively. SLNB-like surgery did not cause changes in lymphatic drainage in the majority of cases. In contrast, lymphatic drainage impairment shown by collecting vessel rupture, dermal backflow and rerouting of lymph flow via collateral vessels were observed after ALND-like surgery. All collateral vessels drained to the inguinal LN. These results indicate that less invasive surgery prevents lymphatic decompensation. They also reveal the development and maturation of collateral lymphatic vessels after extensive surgical trauma, which reroute the flow of lymph towards a different LN. These findings might be helpful for the development of strategies to prevent and/or treat post-surgical lymphedem

    Reed-Solomon turbo product codes for optical communications: from code optimization to decoder design

    No full text
    International audienceTurbo product codes (TPCs) are an attractive solution to improve link budgets and reduce systems costs by relaxing the requirements on expensive optical devices in high capacity optical transport systems. In this paper, we investigate the use of Reed-Solomon (RS) turbo product codes for 40 Gbps transmission over optical transport networks and 10 Gbps transmission over passive optical networks. An algorithmic study is first performed in order to design RS TPCs that are compatible with the performance requirements imposed by the two applications. Then, a novel ultrahigh-speed parallel architecture for turbo decoding of product codes is described. A comparison with binary Bose-Chaudhuri-Hocquenghem (BCH) TPCs is performed. The results show that high-rate RS TPCs offer a better complexity/performance tradeoff than BCH TPCs for low-cost Gbps fiber optic communications
    • …
    corecore