93 research outputs found

    A Pencil-Drawn Electronic Tongue for Environmental Applications.

    Get PDF
    We report on the development of a simple and cost-effective potentiometric sensor array that is based on manual "drawing" on the polymeric support with the pencils composed of graphite and different types of zeolites. The sensor array demonstrates distinct sensitivity towards a variety of inorganic ions in aqueous media. This multisensor system has been successfully applied to quantitative analysis of 100 real-life surface waters sampled in Mahananda and Hooghly rivers in the West Bengal state (India). Partial least squares regression has been utilized to relate responses of the sensors to the values of different water quality parameters. It has been found that the developed sensor array, or electronic tongue, is capable of quantifying total hardness, total alkalinity, and calcium content in the samples, with the mean relative errors below 18%

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Studies on the redox turnover of polyoxometalates using potentiometric chemical sensors

    No full text
    Redox reactions of Keggin-type polyoxometalates (POM), [PVxMo12 xO40](3+x) (x = 1, 2), have been studied for the ïŹrst time employing an array of potentiometric chemical sensors. Variations in the concentrations of vanadyl ions (VO2+) during the redox reactions of POMs were followed in the real-time. DiïŹ€erences in the vanadyl concentration proïŹles observed during re-oxidation of di- and mono-substituted POMs allow us to infer principally diïŹ€erent re-oxidation mechanisms for these compounds. At the beginning of the oxidation of [PVIV2Mo10O40]7 under air an instant release of VO2+ (ca. 7%) from the coordination sphere of POM to the outside solution was detected. VO2+ concentration decreased rapidly while oxidation proceeded indicating return of vanadyl back to the coordination sphere of [PVV2Mo10O40]5 . This ïŹnding indicates the participation of VO2+ outside Keggin structure in the re-oxidation mechanism of di-substituted POM. No release of VO2+ was detected during re-oxidation of [PVIVMo11O40]5 by air oxygen in the presence of laccase (this POM is not oxidisable by air at low temperature and atmospheric pressure). Biocatalysis of [PVIVMo11O40]5 oxidation may include activation of the molecular oxygen by the prosthetic group of laccase thus allowing the oxidation of V(IV) inside the Keggin structure of POM, i.e., without vanadyl release into the outside solution.publishe

    Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine

    No full text
    A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA-Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.publishe
    • 

    corecore