29 research outputs found

    Simulations of coronagraphy with a dynamic hologram for the direct detection of exo-planets

    Full text link
    In a previous paper, we discussed an original solution to improve the performances of coronagraphs by adding, in the optical scheme, an adaptive hologram removing most of the residual speckle starlight. In our simulations, the detection limit in the flux ratio between a host star and a very near planet (5 lambda/D) improves over a factor 1000 (resp. 10000) when equipped with a hologram for cases of wavefront bumpiness imperfections of lambda/20 (resp. lambda/100). We derive, in this paper, the transmission accuracy required on the hologram pixels to achieve such goals. We show that preliminary tests could be performed on the basis of existing technologies.Comment: 5 pages, 6 figure

    Asteroid (16) Psyche’s primordial shape: A possible Jacobi ellipsoid

    Get PDF
    Context. Asteroid (16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Psyche mission. It is also the only asteroid of this size (D >  200 km) known to be metal rich. Although various hypotheses have been proposed to explain the rather unique physical properties of this asteroid, a perfect understanding of its formation and bulk composition is still missing. Aims. We aim to refine the shape and bulk density of (16) Psyche and to perform a thorough analysis of its shape to better constrain possible formation scenarios and the structure of its interior. Methods. We obtained disk-resolved VLT/SPHERE/ZIMPOL images acquired within our ESO large program (ID 199.C-0074), which complement similar data obtained in 2018. Both data sets offer a complete coverage of Psyche’s surface. These images were used to reconstruct the three-dimensional (3D) shape of Psyche with two independent shape modeling algorithms (MPCD and ADAM). A shape analysis was subsequently performed, including a comparison with equilibrium figures and the identification of mass deficit regions. Results. Our 3D shape along with existing mass estimates imply a density of 4.20  ±  0.60 g cm−3, which is so far the highest for a solar system object following the four telluric planets. Furthermore, the shape of Psyche presents small deviations from an ellipsoid, that is, prominently three large depressions along its equator. The flatness and density of Psyche are compatible with a formation at hydrostatic equilibrium as a Jacobi ellipsoid with a shorter rotation period of ∼3h. Later impacts may have slowed down Psyche’s rotation, which is currently ∼4.2 h, while also creating the imaged depressions. Conclusions. Our results open the possibility that Psyche acquired its primordial shape either after a giant impact while its interior was already frozen or while its interior was still molten owing to the decay of the short-lived radionuclide 26Al.Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 199.C-0074 (principal investigator: P. Vernazza). P. Vernazza, A. Drouard, M. Ferrais and B. Carry were supported by CNRS/INSU/PNP. J.H. and J.D. were supported by grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme no. UNCE/SCI/023. E.J. is F.R.S.-FNRS Senior Research Associate. The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE)

    A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea

    Get PDF
    (10) Hygiea is the fourth largest main belt asteroid and the only known asteroid whose surface composition appears similar to that of the dwarf planet (1) Ceres1,2, suggesting a similar origin for these two objects. Hygiea suffered a giant impact more than 2 Gyr ago3 that is at the origin of one of the largest asteroid families. However, Hygeia has never been observed with sufficiently high resolution to resolve the details of its surface or to constrain its size and shape. Here, we report high-angular-resolution imaging observations of Hygiea with the VLT/SPHERE instrument (~20 mas at 600 nm) that reveal a basin-free nearly spherical shape with a volume-equivalent radius of 217 ± 7 km, implying a density of 1,944 ± 250 kg m−3 to 1σ. In addition, we have determined a new rotation period for Hygiea of ~13.8 h, which is half the currently accepted value. Numerical simulations of the family-forming event show that Hygiea’s spherical shape and family can be explained by a collision with a large projectile (diameter ~75–150 km). By comparing Hygiea’s sphericity with that of other Solar System objects, it appears that Hygiea is nearly as spherical as Ceres, opening up the possibility for this object to be reclassified as a dwarf planet.P.V., A.D. and B.C. were supported by CNRS/INSU/PNP. M.Brož was supported by grant 18-04514J of the Czech Science Foundation. J.H. and J.D. were supported by grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme no. UNCE/SCI/023. This project has received funding from the European Union’s Horizon 2020 research and innovation programmes under grant agreement nos 730890 and 687378. This material reflects only the authors’ views, and the European Commission is not liable for any use that may be made of the information contained herein. TRAPPIST-North is a project funded by the University of Liège, in collaboration with Cadi Ayyad University of Marrakech (Morocco). TRAPPIST-South is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F. E.J. and M.G. are F.R.S.-FNRS Senior Research Associates

    Coronography with a dynamic hologram

    Full text link
    An innovative solution to improve the performances of coronagraphs consists in adding, in the optical scheme, a dynamic hologram removing most of the residual speckle starlight. Our simulations show that the detection limit in the flux ratio between a host star and a very near planet, in the case of wavefront bumpiness imperfections at lambda/20 (resp. lambda/100), improves over a factor 1000 (resp. 10000) when equipped with a hologram, allowing to direct image an exo-Earth at a distance of 11 parsec with a 6.5m space telescope

    Prospects for the multiplicity investigation of massive stars with the CARLINA interferometer

    Full text link
    peer reviewedThe multiwavelength study of massive stars has revealed many phenomena that are intimately related to their multiplicity. Colliding winds in massive binaries play indeed a significant role in thermal X-ray emission, particle acceleration, or even dust formation in such systems. In this context, the identification of binaries and the determination of their orbital parameters is a pivotal issue. We first briefly describe the CARLINA project. The sensitivity and imaging capability of Carlina are perfectly adapted for the study of binary systems. Considering its expected specifications, Carlina will operate in complementarity with ELTs and kilometer baseline interferometers. Then, we discuss some prospects for the multiplicity investigation of massive stars, on the basis of the expected performances of the prototype currently studied at the Observatoire de Haute-Provence (OHP)

    Efficiently combining Alpha CenA multi-epoch high-contrast imaging data. Application of K-Stacker to the 80 hrs NEAR campaign

    Full text link
    Keplerian-Stacker is an algorithm able to combine multiple observations acquired at different epochs taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. In 2019, a total of 100 hours of observation were allocated to VLT VISIR-NEAR, a collaboration between ESO and Breakthrough Initiatives, to search for low mass planets in the habitable zone of the Alpha Cen AB binary system. A weak signal (S/N = 3) was reported around Alpha Cen A, at a separation of 1.1 a.u. which corresponds to the habitable zone. We have re-analysed the NEAR data using K-Stacker. This algorithm is a brute-force method able to find planets in time series of observations and to constrain their orbital parameters, even if they remain undetected in a single epoch. We scanned a total of about 3.5e+5 independent orbits, among which about 15 % correspond to fast moving orbits on which planets cannot be detected without taking into account the orbital motion. We find only a single planet candidate, which matches the C1 detection reported in Wagner et al. 2021. Despite the significant amount of time spent on this target, the orbit of this candidate remains poorly constrained due to these observations being closely distributed in 34 days. We argue that future single-target deep surveys would benefit from a K-Stacker based strategy, where the observations would be split over a significant part of the expected orbital period to better constrain the orbital parameters. This application of K-Stacker on high contrast imaging data in the mid-infrared demonstrates the capability of this algorithm to aid in the search for Earth-like planets in the habitable zone of the nearest stars with future instruments of the E-ELT such as METIS.Comment: 9 pages, 11 figures, K-Stacker github lin
    corecore