4,615 research outputs found

    Le and Olaya-Castro Reply:

    Get PDF

    Blurred quantum Darwinism across quantum reference frames

    Get PDF
    Quantum Darwinism describes objectivity of quantum systems via their correlations with their environment—information that hypothetical observers can recover by measuring the environments. However, observations are done with respect to a frame of reference. Here we take the formalism of [Giacomini et al., Nat. Commun. 10, 494 (2019)] and consider the repercussions on objectivity when changing quantum reference frames. We find that objectivity depends on nondegenerative relative separations, conditional state localization, and environment macrofractions. There is different objective information in different reference frames due to the interchangeability of entanglement and coherence, and of statistical mixing and classical correlations. As such, objectivity is subjective across quantum reference frames

    Prediction of hip fracture in post-menopausal women using artificial neural network approach

    Full text link
    © 2017 IEEE. Hip fracture is one of the most serious health problems among post-menopausal women with osteoporosis. It is very difficult to predict hip fracture, because it is affected by multiple risk factors. Existing statistical models for predicting hip fracture risk yield area under the receiver operating characteristic curve (AUC) ∼0.7-0.85. In this study, we trained an artificial neural network (ANN) to predict hip fracture in one cohort, and validated its predictive performance in another cohort. The data for training and validation included age, bone mineral density (BMD), clinical factors, and lifestyle factors which had been obtained from a longitudinal study that involved 1167 women aged 60 years and above. The women had been followed up for up to 10 years, and during the period, the incidence of new hip fractures was ascertained. We applied feed-forward neural networks to learn from the data, and then used the learning for predicting hip fracture. Results of prediction showed that the accuracy of model I (which included only lumbar spine and femoral neck BMD) and model II (which included non-BMD factors) was 82% and 84%, respectively. When both BMD and non-BMD factors were combined (Model III), the accuracy increased to 87%. The AUC for model III was 0.94. These findings indicate that ANNs are able to predict hip fracture more accurately than any existing statistical models, and that ANNs can help stratify individuals for clinical management

    Objectivity (or lack thereof): Comparison between predictions of quantum Darwinism and spectrum broadcast structure

    Get PDF
    Quantum Darwinism and spectrum broadcast structure describe the emergence of objectivity in quantum systems. However, it is unclear whether these two frameworks lead to consistent predictions on the objectivity of the state of a quantum system in a given scenario. In this paper, we jointly investigate quantum Darwinism and spectrum broadcasting, as well as the subdivision of quantum Darwinism into accessible information and quantum discord, in a two-level system interacting with an N-level environment via a random matrix coupling. We propose a partial trace method to suitably and consistently partition the effective N-level environment and compare the predictions with those obtained using the partitioning method proposed by Perez [Phys. Rev. A 81, 052326 (2010)]. We find that quantum Darwinism can apparently emerge under the Perez trace even when spectrum broadcast structure does not emerge, and the majority of the quantum mutual information between system and environment fractions is in fact quantum in nature. This work therefore shows there can be discrepancies between quantum Darwinism and the nature of information and spectrum broadcast structure

    Strong Quantum Darwinism and Strong Independence are Equivalent to Spectrum Broadcast Structure

    Get PDF
    How the objective everyday world emerges from the underlying quantum behavior of its microscopic constituents is an open question at the heart of the foundations of quantum mechanics. Quantum Darwinism and spectrum broadcast structure are two different frameworks providing key insight into this question. Recent works, however, indicate these two frameworks can lead to conflicting predictions on the objectivity of the state of a system interacting with an environment. Here, we provide a resolution to this issue by defining strong quantum Darwinism and proving that it is equivalent to spectrum broadcast structure when combined with strong independence of the subenvironments. We further show that strong quantum Darwinism is sufficient and necessary to signal state objectivity without the requirement of strong independence. Our Letter unveils the deep connection between strong quantum Darwinism and spectrum broadcast structure, thereby making fundamental progress toward understanding and solving the emergence of classicality from the quantum world. Together they provide us a sharper understanding of the transition in terms of state structure, geometry, and quantum and classical information

    This Gut Ain't Big Enough for Both of Us. Or Is It? Helminth-Microbiota Interactions in Veterinary Species

    Get PDF
    Gastrointestinal helminth parasites share their habitat with a myriad of other organisms, that is, the commensal microbiota. Increasing evidence, particularly in humans and rodent models of helminth infection, points towards a multitude of interactions occurring between parasites and the gut microbiota, with a profound impact on both host immunity and metabolic potential. Despite this information, the exploration of the effects that parasite infections exert on populations of commensal gut microbes of veterinary species is a field of research in its infancy. In this article, we summarise studies that have contributed to current knowledge of helminth-microbiota interactions in species of veterinary interest, and identify possible avenues for future research in this area, which could include the exploitation of such relationships to improve parasite control and delay or prevent the development of anthelmintic resistance

    Nonlinear rheological characteristics of single species bacterial biofilms

    Get PDF
    Bacterial biofilms in natural and artificial environments perform a wide array of beneficial or detrimental functions and exhibit resistance to physical as well as chemical perturbations. In dynamic environments, where periodic or aperiodic flows over surfaces are involved, biofilms can be subjected to large shear forces. The ability to withstand these forces, which is often attributed to the resilience of the extracellular matrix. This attribute of the extracellular matrix is referred to as viscoelasticity and is a result of self-assembly and cross-linking of multiple polymeric components that are secreted by the microbes. We aim to understand the viscoelastic characteristic of biofilms subjected to large shear forces by performing Large Amplitude Oscillatory Shear (LAOS) experiments on four species of bacterial biofilms: Bacillus subtilis, Comamonas denitrificans, Pseudomonas fluorescens and Pseudomonas aeruginosa. We find that nonlinear viscoelastic measures such as intracycle strain stiffening and intracycle shear thickening for each of the tested species, exhibit subtle or distinct differences in the plot of strain amplitude versus frequency (Pipkin diagram). The biofilms also exhibit variability in the onset of nonlinear behaviour and energy dissipation characteristics, which could be a result of heterogeneity of the extracellular matrix constituents of the different biofilms. The results provide insight into the nonlinear rheological behaviour of biofilms as they are subjected to large strains or strain rates; a situation that is commonly encountered in nature, but rarely investigated

    Quantitative TEM imaging of the magnetostructural and phase transitions in FeRh thin film systems

    Get PDF
    Equi-atomic FeRh is a very interesting material as it undergoes a magnetostructural transition from an antiferromagnetic (AF) to a ferromagnetic (FM) phase between 75-105 °C. Its ability to present phase co-existence separated by domain walls (DWs) above room temperature provides immense potential for exploitation of their DW motion in spintronic devices. To be able to effectively control the DWs associated with AF/FM coexistence in FeRh thin films we must fully understand the magnetostructural transition and thermomagnetic behaviour of DWs at a localised scale. Here we present a transmission electron microscopy investigation of the transition in planar FeRh thin-film samples by combining differential phase contrast (DPC) magnetic imaging with in situ heating. We perform quantitative measurements from individual DWs as a function of temperature, showing that FeRh on NiAl exhibits thermomagnetic behaviour consistent with the transition from AF to FM. DPC imaging of an FeRh sample with HF-etched substrate reveals a state of AF/FM co-existence and shows the transition from AF to FM regions proceeds via nucleation of small vortex structures, which then grow by combining with newly nucleated vortex states into larger complex magnetic domains, until it is in a fully-FM state

    Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms

    Get PDF
    Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover

    Laser powder bed fusion of high-strength and corrosion-resistant Inconel alloy 725

    Get PDF
    The development of additive manufacturing, or three-dimensional (3D) printing, technologies has produced breakthroughs in the design and manufacturing of products by enhancing design freedom and minimising manufacturing steps. In addition, the complex, unique microstructures imparted by the additive processes offer prospects of unprecedented advances to produce high-performance metal alloys for high-temperature and corrosive environments. Here, we present the first additive manufacturing of Inconel alloy 725, an advanced nickel-base superalloy that is the widely accepted gold standard material of choice for oil and gas, chemical, and marine applications. We explore the printability of Inconel alloy 725 and identify a wide processing space to build material with a crack- and near-pore-free microstructure. The conventionally heat-treated Inconel alloy 725 has an equiaxed, near-fully recrystallised microstructure containing copious twin boundaries and nano-precipitates. It also displays promising tensile properties and corrosion resistance compared to its wrought counterpart. Our work opens the door toward additive manufacturing of Inconel alloy 725 components with optimised microstructure and topology geometry for applications in harsh environments
    • …
    corecore