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Blurred quantum Darwinism across quantum reference frames
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Quantum Darwinism describes objectivity of quantum systems via their correlations with their environment—
information that hypothetical observers can recover by measuring the environments. However, observations are
done with respect to a frame of reference. Here we take the formalism of [Giacomini et al., Nat. Commun.
10, 494 (2019)] and consider the repercussions on objectivity when changing quantum reference frames.
We find that objectivity depends on nondegenerative relative separations, conditional state localization, and
environment macrofractions. There is different objective information in different reference frames due to the
interchangeability of entanglement and coherence, and of statistical mixing and classical correlations. As such,
objectivity is subjective across quantum reference frames.
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I. INTRODUCTION

The emergence of the classical world from the underlying
quantum mechanics remains a fundamental riddle. Quantum
Darwinism is one particular approach that describes the emer-
gence of objectivity through the spread of information [1].
A system state S is objective (or intersubjective [2]) when
many independent observers can determine the state of S
independently, without perturbing it, and arrive at the same
result [3,4].

Quantum Darwinism can be seen as an extension of
the decoherence theory. As systems interact with their sur-
rounding environments, decoherence theory describes how
quantum systems lose their coherence and decohere into a pre-
ferred pointer basis [5–7]. The environment is not unchanged
through this process—the system becomes correlated with the
environment. Quantum Darwinism occurs if the information
about the system has been proliferated into multiple fractions
of the environment, such that many observers can access
independent environments and gain equivalent information
about the system. Objective states can be described either with
Żurek’s quantum Darwinism [8], strong quantum Darwinism
[9], or spectrum broadcast structure [4]. The emergence of
these states have been studied extensively (for example, recent
works include Refs. [10–24]).

A key component of quantum Darwinism is the measure-
ment performed by observers—which in physics, is done
relative to some reference frame. However, in works thus
far, one implicitly assumes that all observers share the same
classical frame. However, is the objectivity still consistent if
observers do not share the same frame?

*thao.le.16@ucl.ac.uk

While classical reference frames are well established, there
are numerous different proposals for describing quantum ref-
erence frames that focus on different aspects (for example,
Refs. [25–31]). In this paper, we apply the framework of
Giacomini et al. [30], in which quantum reference frames are
associated with a physical quantum state and vice versa.

We examine objective states in different quantum reference
frames. The method of Giacomini et al. [30] allows us to
move to the reference frame associated with any particular
environment state which in turn is associated with the hy-
pothetical observer frame. Entanglement and coherence have
become interchangeable frame-dependent properties; as are
statistical mixing and classical correlations. Such correlations
are an intrinsic part of quantum Darwinism, hence, in general,
objectivity does not remain the same in different quantum
reference frames. However, there are certain conditions in
which objectivity is consistent and conditions in which some
kind of objectivity exists. To clearly show this, we con-
sider static particles, such that changing quantum reference
frames requires only changes in relative position, and we use
the clear state structure afforded by spectrum broadcasting
[4].

We show that, if all system and environment positions are
exactly localized and randomly distributed (say, due random
noise), then objectivity is consistent in all frames. We demon-
strate that nonmatching relative positions between all states is
key to this consistency.

However, by allowing the system and environments to have
a nonzero, continuous spread, objectivity distorts and blurs
when changing quantum reference frames. The internal sta-
tistical mixedness and coherences of the environment states
now play a crucial role in distributing new correlations. We
find that the distinguishability of the other environment states
depends on an interplay of relative distance separations and
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relative spreads and how large macrofractions of environ-
ments may be required to recover objectivity.

Finally, we analyze scenarios with a system interacting
with environments to show how objectivity can arise dynami-
cally, and to show how these factors—coherences, spectrum
broadcasting, mixedness, and state separation—affect the
level of objectivity in different frames.

This paper is structured as follows. In Sec. II we de-
scribe the frameworks of spectrum broadcast structure and
quantum reference frames. In Sec. III we depict some states
that have consistent objectivity in all relevant quantum ref-
erence frames. In Sec. IV we examine objective states with
a Gaussian-like spread. We describe the distortion of objec-
tivity, and investigate the requirements for environment-state
distinguishability that is a necessary component of quantum
Darwinism. In Sec. V we prove the precise conditions for
perfect objectivity in all quantum reference frames. In Sec. VI
we numerical investigate a fully coherent model involving a
dynamic interaction between a system and two environments.
We conclude in Sec. VII.

II. PRELIMINARIES

A. Spectrum broadcast structure

In quantum Darwinism, we consider a central system S
that interacts and becomes correlated with its surrounding
environment E . Typically, only a fragment F ⊂ E of the envi-
ronment is measured and evaluated against the conditions for
objectivity—as the full pure system environment will retain
coherences and entanglement under a global unitary evolution
[11]. There are number of different frameworks that describe
the properties of an objective state [4,8,9], each corresponding
to slightly different strengths of objectivity. In this paper, we
are focused on spectrum broadcast structure [4], because it has
a clear state structure that allows us to explicitly calculate how
the state changes under quantum reference frame transforma-
tions. Note that from here, when we speak of “environment,”
we refer to the observed environment.

Definition 1. Spectrum broadcast structure (SBS) [4]. A
system environment has spectrum broadcast structure when
the joint state can be written as

ρSE =
∑

i

pi|i〉〈i|S ⊗ ρE1|i ⊗ · · · ⊗ ρEN |i, (1)

where {|i〉S} is the pointer basis, pi are probabilities, and all
states ρEk |i are perfectly distinguishable, i.e., Tr(ρEk |iρEk | j ) =
0 ∀ i �= j, for each observed environment Ek .

These states have zero discord [32] between the system and
environments, feature maximal classical correlations between
the system and environments, and satisfy strong independence
(see Definition 2). All states with spectrum broadcast structure
are objective, though not all objective states have spectrum
broadcast structure [4,9].

B. Quantum reference frames

As we noted, there are a number of different pre-
scriptions for reference frames and quantum informa-
tion (e.g., Refs. [25–28]). In this paper, we apply the
framework of Giacomini et al. [30], which is inherently
relational.

We consider the system and environments to be static (i.e.,
without momentum) and distributed across space. Thus, a
general reference frame transformation, Ŝ(C→A)

position, is defined
here as position only, as follows [30]:

Ŝ(C→A)
position

∫
dxA dxB�(xA, xB)|xA〉A|xB〉B

=
∫

dqB dqC�(−qC, qB − qC )|qB〉B|qC〉C, (2)

i.e., there is a coordinate transformation, xA → −qC , xB →
qB − qC . We will always start in an implicit laboratory ref-
erence frame (C) and move to the quantum reference frames
centered on a particular quantum state.

For our purposes, SBS is inherently mixed. Hence, if the
initial state ρ

(C)
SE1···EN

in the (C) reference frame (laboratory
frame) is

ρ
(C)
SE1···EN

=
∫

dxS dx′
S

(
N∏

i=1

∫
dxEi dx′

Ei

)
ρ(xS, xE1 , . . . , xEN , x′

S, x′
E1

, . . . , x′
EN

)|xS〉〈x′
S|S ⊗

N⊗
j=1

|xEj 〉〈x′
Ej

|
Ej

, (3)

then the transformation to the environment E1 reference frame (without loss of generality) is

ρ
(E1 )
SCE2···EN

=
∫

dqS dq′
S

∫
dqC dq′

C

(
N∏

i=2

∫
dqEi dq′

Ei

)
|qS〉〈q′

S|S ⊗ |qC〉〈q′
C |C ⊗

N⊗
j=2

|qEj 〉〈q′
Ej

|
Ej

× ρ(qS − qC,−qC, qE2 − qC, . . . , qEN − qC, q′
S − q′

C,−q′
C, q′

E2
− q′

C, . . . , q′
EN

− q′
C ). (4)

Entanglement and coherences in the position basis are
quantum reference frame dependent [30]. Furthermore,
statistical (incoherent) mixtures and classical correlations
are also frame dependent. Given that objectivity is built
up from correlations between system and environment,
and given that the environment states can contain coher-
ences and statistical mixture, changing reference frames

can have a serious effect on the objectivity of the
system.

III. PERFECT LOCALIZATION AND OBJECTIVITY
IN ALL QUANTUM REFERENCE FRAMES

We consider a system S and collection of environments
{Ei}i=1,...,N , such that they are objective in the laboratory
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frame C, and in particular have spectrum broadcast
structure. The system and environments are located in
a one-dimensional, continuous space, with positions xX ,
X = S, Ei. In the idealized situation, these positions are
perfectly localized, i.e., existing at isolated points in space,
and this allows us to gain insight into one of factors that
contribute to consistent objectivity in all quantum reference
frames—nondegenerative relative positions.

We begin with Sec. III A, where we first examine the
simplest, illustrative situation where the objective states have
GHZ-like structure. In Sec. III B we consider general perfectly
localized objective SBS states.

A. GHZ-like objective states

One of the simplest objective states possible is the reduced
Greenberger-Horne-Zeilinger state (GHZ state); it is simpler
yet again if its elements are incoherent in the position basis as
follows:

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣xS
i

〉〈
xS

i

∣∣
S
⊗

N⊗
j=1

∣∣xEj

i

〉〈
x

Ej

i

∣∣
Ej

, (5)

which is objective provided that all {xS
i }i, {xEj

i }i are distinct.
The implicit laboratory reference frame (C) is perfectly lo-
calized and product with the system and environments. The
objective information is characterized by the probability dis-
tribution {pi}i.

In the frame of any of the environments—we take E1

without loss of generality—the joint state now involves the
laboratory C as one of its subsystems, and now E1 is implicit,
perfectly localized, and in product state relative to all other
subsystems:

ρ
(E1 )
SCE2···EN

=
∑

i

pi

∣∣xS
i − xE1

i

〉〈
xS

i − xE1
i

∣∣
S ⊗ ∣∣−xE1

i

〉〈−xE1
i

∣∣
C

⊗
N⊗

j=2

∣∣xEj

i − xE1
i

〉〈
x

Ej

i − xE1
i

∣∣
Ej

. (6)

In order for this to still be objective, and with the same infor-
mation as in the laboratory frame C, {pi}i, we require that all
{xS

i − xE1
i }i are distinct, and all {xEj

i − xE1
i }i are distinct—that

is, these terms are nonmatching or nondegenerate.
The majority of states of the form (5) remain consistently

objective in all quantum reference frames, in the following
sense: If all the various positions {xS

i }i, {xE1
i }i, etc. are ran-

domly chosen from a continuous interval, for example with
probability mass function funi(x) = 1, x ∈ [0, 1], then the
probability that any two are equal is zero: P (xi = x j ) = 0,
due to the nature of discrete sampled numbers from uncount-
ably infinite interval. Hence, any randomly drawn {xX

i }i,X ,
X = S, E1, . . . , EN will produce an objective state for Eq. (5).
By the same argument, the probability that any relative separa-
tions {xS

i − xE1
i }i are equal is zero: P (xS

i − xE1
i = xS

j − xE1
j ) =

0, and hence all the terms in the system-environment state in
any quantum reference frame, Eq. (6), are distinct and hence
remains objective with the same spectrum probabilities {pi}i.

Randomly sampled positions of the system and environ-
ment describe disorganized and noisy scenarios and models.
However, solid state materials and lattices can have a rigid

structure and hence potentially degenerate distances between
state positions. In these situations, SBS and objectivity may
become trivial in certain quantum reference frames.

Example 1. Consider the typical reduced GHZ state, where
xi = i for i = 0, 1:

ρ
(C)
SE1···EN

= p0|0〉〈0|⊗N+1 + p1|1〉〈1|⊗N+1. (7)

In the quantum reference frame of environment E1, the state
has the form

ρ
(E1 )
SCE2···EN

=|0 · · · 0〉〈0 · · · 0|SE2···EN

⊗ (p0|0〉〈0|C + p1|−1〉〈−1|C ). (8)

The system and the remaining environments are trivially “ob-
jective” and uncorrelated. Meanwhile, the old information
about the system has been shifted into the quantum system
of the laboratory reference frame C.

Observation 1. If all positions are perfectly localized, the
nondegeneracy of the relative positions of the system and en-
vironments is crucial in ensuring the consistent objectivity in
all quantum reference frames. If some of the relative distances
between positions are not distinct, then the corresponding
states can become nondistinguishable and thus degrade the
original objectivity.

In Appendix A, we consider GHZ-like states with con-
tinuous objective probabilities, leading to an analogous
requirement of nondegeneracy (in particular, continued injec-
tivity of the functions mapping the continuous positions of the
system and environment).

If instead the various positions {xX
i }i,X are picked uni-

formly from a finite set of N positions, then the probability
of two being the same is P (xi = x j ) = 1/N . This goes to
zero as N → ∞. This situation can correspond to the case
when there is a finite precision of a measurement device, and
where any spread in the positions is much smaller than the
device precision. In Sec. IV we will consider when there is an
inherent spread in the position, and in Sec. VI the positions of
the system and environment are limit to a finite set. But, first,
in the following subsection, we consider general coherent—
albeit still localized—objective states with spectrum broadcast
structure.

B. Perfectly localized spectrum broadcast states and
new objectivity

States with the SBS form typically contain coherences
and mixtures in the conditional environment states. Under
transformations of quantum reference frames, these can turn
into global correlations. Combined with perfect localization,
we show how this produces a new, more complex objective
information in different frames.

In general, a perfectly localized objective state with the
SBS can be written as

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S ⊗

N⊗
j=1

ρEj |i, (9)

where we have general coherent states:∣∣ψS
i

〉 = ∑
k

qk,i

∣∣xS
k|i
〉
S
, (10)
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ρEj |i =
∑

k j

tk j ,i

∣∣ϕEj

i,k j

〉〈
ϕ

Ej

i,k j

∣∣
Ej

, (11)

∣∣ϕEj

i,k j

〉 = ∑
ai j

rai j ,i, j,k j

∣∣xEj

ai j ,k j |i
〉
Ej

. (12)

Objectivity requires that these states are orthogonal:
〈ψS

i |ψS
i′ 〉 = 0 ∀ i �= i′ and 〈ϕEj

i,k j
|ϕEj

i′,k′
j
〉 = 0 ∀ (i, k j ) �= (i′, k′

j ).

It is sufficient (though not necessary) if we let all the values
{xk|i}i,k , {xEj

ai j ,k j |i}i,k j ,ai j be randomly chosen numbers from a
continuous interval, in which case the probability that any are
equal is zero, hence all terms are orthogonal.

In the frame of environment E1, the joint state has the
following form:

ρ
(E1 )
SCE2···EN

=
∑
i,k1

pitk1,i

∑
ai1,a′

i1

rai1,i,1,k1 r∗
a′

i1,i,1,k1

∣∣ψ̃S
i,k1,ai1

〉〈
ψ̃S

i,k1,a′
i1

∣∣
S

⊗ ∣∣−xE1
ai1,k1|i

〉〈−xE1
a′

i1,k1|i
∣∣
C

⊗
N⊗

j=2

∑
k j

tk j ,i

∣∣ϕ̃Ej

i,k j ,ai1

〉〈
ϕ̃

Ej

i,k j ,a′
i1

∣∣
Ej

, (13)

where ∣∣ψ̃S
i,k1,ai1

〉 = ∑
k

qk,i

∣∣xS
k|i − xE1

ai1,k1|i
〉
S
, (14)

∣∣ϕ̃Ej

i,k j ,ai1

〉 = ∑
ai j

rai j ,i, j,k j

∣∣xEj

ai j ,k j |i − xE1
ai1,k1|i

〉
. (15)

Due to the coherences and statistical mixedness of the original
environment E1 state, there is now entanglement and corre-
lations between the system and the environment in the (E1)
frame. In particular, much of the entanglement is tied with
the laboratory subsystem C—and to the indices ai1 and a′

i1
that came from the original E1 state. Hence if the positions
{xE1

ai1,k1|i}i,k1,ai1
are distinct, then we can trace out C and remove

the system-environment entanglement:

ρ
(E1 )
SE2···EN

=
∑

i,k1,ai1

pitk1,i|rai1,i,1,k1 |2
∣∣ψ̃S

i,k1,ai1

〉〈
ψ̃S

i,k1,ai1

∣∣
S

⊗
N⊗

j=2

ρ̃Ej |i,k1,ai1 , (16)

ρ̃Ej |i,k1,ai1
:=

∑
k j

tk j ,i

∣∣ϕ̃Ej

i,k j ,ai1

〉〈
ϕ̃

Ej

i,k j ,ai1

∣∣
Ej

. (17)

From the assumption that all the {x···}··· are randomly sampled
from a continuous distribution, all the relative differences
{xS

k|i − xE1
ai1,k1|i}k,i,k1 , {xEj

ai j ,k j |i − xE1
ai1,k1|i}i, j,k j ,k1

are unique, hence

the conditional states of the system and the environments
are perfectly distinguishable, and the reduced state ρ

(E1 )
SE2···EN

has the SBS. However, the objective information is now en-
coded by the probabilities {pitk1,i|rai1,i,1,k1 |2}i,k1,ai1

. Although
the original system information can still be recovered by
taking the relevant marginal distribution, we see that in each
different reference frame corresponding to environment Ej ,
we will have a different set of objective information.

Observation 2. Coherences in the environment can create
entanglement between the system, laboratory, and remainder
environments. This can typically be “removed” by tracing out
the laboratory subsystem.

Observation 3. Incoherent mixedness in the environment
creates new classical correlations between the system, lab-
oratory, and remainder environments. This can lead to new
objective information, which includes the original information
which can be recovered from the marginals by summing over
terms associated with the environment.

Hence, while entanglement and coherence are frame-
dependent properties, it is equally relevant that incoher-
ent mixedness and classical correlations are also frame-
dependent. Only a very small class of objective states retain
the same objectivity in different quantum reference frames:
and more generally, the system objectivity transforms to a
more complicated objectivity, of which the original system
information is embedded within.

IV. CONTINUOUS SPREAD AND BLURRED OBJECTIVITY

Thus far, we have shown how nondegeneracy of relative
positions plays a crucial role in objectivity, when positions
are perfectly localized. However, in general, systems and en-
vironments have a nonzero spread. In this section, we examine
systems and environments with a continuous spread described
by Gaussian distributions across space, characterized by mean
μ and standard deviation σ . Objectivity becomes blurred and
distinguishability reduces as states become “smeared” across
space in different reference frames.

In Sec. IV A we describe the error probability of distin-
guishing conditional states, and how that is bounded by the
fidelity. This fidelity becomes our measure for a perceived
objectivity. In Sec. IV B we consider incoherent objective
states, in which the conditional environment states are single
Gaussians for simplicity, and in Sec. IV C we consider general
coherent objective states.

A. Effective perceived objectivity and the fidelity
of measurement

One method to quantify compliance with the SBS is with a
distance measure to the set of the SBS states. For example,
some of us [2] have developed a computable tight bound
η[ρSF ] on the trace distance (where F denotes a subset of
environment states). For a predefined basis, the system can
be written as ρS = ∑

i pi|i〉〈i| +∑
i �= j pi j |i〉〈 j|, and then the

SBS distance bound is

T SBS(ρSF ) = 1

2
min
ρSBS

SF

∥∥ρSF − ρSBS
SF

∥∥
1 � η[ρSF ], (18)

η[ρSF ] ≡ � +
∑
i �= j

√
pi p j

F∑
k=1

B(ρEk |i, ρEk | j ), (19)

where � describes the coherence of the system relative to a
predefined basis, i.e., encoding the {pi j}i �= j terms, and

B(ρi, ρ j ) = ‖√ρi
√

ρ j‖1 (20)

is the fidelity describing the distinguishability of the condi-
tional environment states, and {pi}i are probabilities of the
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system in the predefined basis. The above bound, however,
implicitly assumes strong independence of the environments:

Definition 2. Strong independence [4]. Subenvironments
{Ek}k have strong independence relative to the system S if
their conditional mutual information is vanishing:

I (Ej :Ek|S) = 0, ∀ j �= k. (21)

Unlike the work in Ref. [2], strong independence is not
maintained in general when changing quantum reference
frames. However, strong independence is not required for a
more general objectivity [9].

Here we focus on the distinguishability of the conditional
states. For an ensemble {pi, ρi}i, and a set of measurement op-
erators {	i}i,

∑
i 	i = 1, to pick out i, the average probability

of successful measurement is

P (success) =
∑

i

piTr[ρi	i], (22)

and the average probability of failure is then P (error) = 1 −
P (success). The minimum error of distinguishing the states is
bounded by the fidelity of the conditional states [33,34]:∑

i< j

pi p j‖√ρi
√

ρ j‖2
1 � P (error) �

∑
i �= j

√
pi p j‖√ρi

√
ρ j‖1.

(23)
Hence, the fidelity ‖√ρi

√
ρ j‖1

is the key term that we
will be calculating in this section. We will also occasionally
calculate the overlap between two states,

L(ρi, ρ j ) = Tr[ρiρ j], (24)

which gives a lower bound on the fidelity, L(ρi, ρ j ) �
‖√ρi

√
ρ j‖2

1
.

For perfect objectivity, it is necessary (but not sufficient)
for P (error) = 0, hence the lower bound to P (error) in turn
gives a minimum distance from objectivity.

B. Incoherent, unmixed objective states and blurred objectivity

Consider the following incoherent objective state with the
SBS,

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣xS
i

〉〈
xS

i

∣∣
S
⊗

N⊗
j=1

ρEj |i, (25)

where the environment states are unmixed (in the sense of
consisting of a single Gaussian-distributed state rather than
a discrete sum of Gaussians):

ρEj |i =
∫

dxEj f (xEj |μEj |i, σEj |i )|xEj 〉〈xEj |. (26)

We have defined the Gaussian (normal) probability density

f (x|μ, σ ) = 1√
2πσ

exp

[
−1

2

(x − μ

σ

)2
]
. (27)

This allows us to focus on the effects of the Gaussian spread
on the objectivity. From the very beginning, there is no perfect
objectivity: the fidelity between two conditional environment
states for i, i′ is
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0.4
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FIG. 1. Top: if the peaks for the states are separated much farther
than their standard deviations (here �μ = 10σ ), there is very little
overlap and these states are distinguishable. Bottom: Alternatively,
if the central peaks are the same or very close, varying greatly
standard deviations (here five times or more) allows for good dis-
tinguishability, because measurement at further locations will, with
high probability, correspond to the wider distributions.

‖√ρEj |i
√

ρEj |i′ ‖1
=

exp

[
−

(
μE j |i−μE j |i′

)2

4
(
σ 2

E j |i+σ 2
E j |i′

)
]

√
σ 2

E j |i+σ 2
E j |i′√

2σE j |iσE j |i′

, (28)

which is always nonzero. As we impose that our original
state in the laboratory frame is objective, this fidelity must be
sufficiently small for all i �= i′. Hence, for any pair of i �= i′,
we must either have μEj |i − μEj |i′ �

√
σ 2

Ej |i + σ 2
Ej |i′ , i.e., the

peak separations are larger than the standard deviation, or
σEj |i � σEj |i′ (or vice versa), i.e., one conditional state must
have a larger spread than the others—this allows for the de-
tection of the widespread distribution outside the bulk to the
sharper distribution. These two cases are depicted in Fig. 1.

Observation 4. Objectivity requires the distinguishability
of conditional states. If the conditional states are described
with a Gaussian distribution, then the distinguishability re-
quires a combination of sufficiently far separated peaks {μ}
or otherwise sufficiently different spreads {σ }.

Without loss of generality, we change to the quantum ref-
erence frame of the first environment E1:

ρ
(E1 )
SCE2···EN

=
∑

i

pi

∫
dqC f (−qC |μE1|i, σE1|i )

× ∣∣xS
i + qC

〉〈
xS

i + qC

∣∣
S ⊗ |qC〉〈qC |

⊗
N⊗

j=2

∫
dqEj f (qEj − qC |μEj |i, σEj |i )|qEj 〉〈qEj |.

(29)
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FIG. 2. In the frame of (E1), the original peaks of environment
Ej , at μE j |i are shifted by qC , which ranges over the entire space,
but with a Gaussian envelope centered at −μE1|i. Every curve corre-
sponds to a different environment state conditioned on a different qC

(for a fixed i). Different qC give curves that overlap significantly and
hence are not distinguishable.

In the new frame, the system is centered around xS
i − μE1|i,

the old laboratory C is centered around −μE1|i, and the
other environments have a complex distribution with a con-
tinuum of multiple peaks, at qC + μEj |i, where qC is centered
around −μE1|i. While the original system-objective informa-
tion still exists, there are now extra classical correlations
given across by

∫
dqC . This continuum across qC means that

we do not have objectivity for the continuous distribution
{pi f (−qC |μE1|i, σE1|i)}i,qC

, as the states given by qC versus
qC + δ are not well distinguished. This is depicted in Fig. 2.

Thus, the most immediate, and preferred, candidate for
objectivity is the original information indexed by i. First, the
new conditional system states must be distinguishable. The
local system state is ρ

(E1 )
S = ∑

i piρ
(E1 )
S|i , where the conditional

states are

ρ
(E1 )
S|i :=

∫
dqC f (−qC |μE1|i, σE1|i)

∣∣xS
i + qC

〉〈
xS

i + qC

∣∣
S. (30)

The fidelity of conditional system states is

∥∥∥√ρ
(E1 )
S|i

√
ρ

(E1 )
S|i′

∥∥∥
1

=
exp

[
− (xS

i −μE1 |i−xS
i′+μE1 |i′ )

2

4
(
σ 2

E1 |i+σ 2
E1 |i′

)
]

√
σ 2

E1|i + σ 2
E1|i′

/√
2σE1|iσE1|i′

. (31)

Distinguishability requires a low fidelity, which occurs either
if the shifted distances are nondegenerate with a sufficiently
large separation, or if one of σE1|i � σE1|i′ .

The reduced state on environment Ej is ρ
(E1 )
Ej

= ∑
i piρ

(E1 )
Ej |i ,

with conditional states

ρ
(E1 )
Ej |i :=

∫
dqC

∫
dqEj f (−qC |μE1|i, σE1|i )

× f
(
qEj − qC |μEj |i, σEj |i

)|qEj 〉〈qEj |. (32)

The fidelity of the conditional states is

∥∥∥√ρ
(E1 )
Ej |i

√
ρ

(E1 )
Ej |i′

∥∥∥
1

=
√

2
[(

σ 2
E1|i + σ 2

E1|i′
)(

σ 2
Ej |i + σ 2

Ej |i′
)]1/4√

σ 2
E1|i + σ 2

E1|i′ + σ 2
Ej |i + σ 2

Ej |i′
exp

[
−
(
μE1|i − μE1|i′ − μEj |i + μEj |i′

)2

4
(
σ 2

E1|i + σ 2
E1|i′ + σ 2

Ej |i + σ 2
Ej |i′

)
]
. (33)

Once again, distinguishability requires low fi-
delity, which occurs if the shifted differences are
very nondegenerate: μE1|i − μE1|i′ − μEj |i + μEj |i′ �√

σ 2
E1|i + σ 2

E1|i′ + σ 2
Ej |i + σ 2

Ej |i′ , or if at least one of

the standard deviations σ ∈ {σE1|i, σE1|i′ , σEj |iσEj |i′ } is
separated from the others by orders of magnitude, so that

‖
√

ρ
(E1 )
Ej |i

√
ρ

(E1 )
Ej |i′ ‖1

∼ 1/
√

σ → 0 for σ → ∞.

Observation 5. For the original information to remain ob-
jective in all frames, a necessary condition is good local
distinguishability (local perceived objectivity). This requires
a combination of very nondegenerate relative separations and
very localized conditional states, or conditional spreads that
vary by orders of magnitude.

Suppose the conditional fidelity ‖
√

ρ
(E1 )
Ej |i

√
ρ

(E1 )
Ej |i′ ‖1

is not

close to zero. In this case, we can take macrofractions in or-
der to increase distinguishability. Suppose we have a fraction
F = {Ej} j∈F . Then the conditional fidelity is∥∥∥√ρ

(E1 )
F |i

√
ρ

(E1 )
F |i′

∥∥∥
1

=
∏
j∈F

∥∥∥√ρ
(E1 )
Ej |i

√
ρ

(E1 )
Ej |i′

∥∥∥
1
. (34)

Provided ‖
√

ρ
(E1 )
Ej |i

√
ρ

(E1 )
Ej |i′ ‖1

< 1, which is true provided that

there is nondegeneracy in the relative positions, μE1|i −

μE1|i′ − μEj |i + μEj |i′ �= 0, then the product of increasingly

many of them takes ‖
√

ρ
(E1 )
F |i

√
ρ

(E1 )
F |i′ ‖1

→ 0.

Observation 6. Information becomes less distinguishable
in different frames. Provided that there is nondegeneracy in
the relative peak positions, distinguishability can be achieved
by taking a suitably large collection of subenvironments
(macrofractions).

In Fig. 3 we demonstrate the interplay between localization
and macrofraction size and their contribution to the distin-
guishability of two conditional states.

In general, the conditional environment states can be
mixed, e.g., ρE1|i = ∑

k qkρE1|i,k from Eq. (25) can be
a mixture of distinguishable Gaussian states. As pre-
viously determined in Section III, this leads to dif-
ferent objective information given by the distribution
{piqk}i,k , where the original information is recovered
through the marginal obtained by summing over all values
of qk .

C. Coherent objectivity states and the rise of new classical and
quantum correlations

In general, objective states have coherence. When mov-
ing to the reference frame of one of those environments,
this coherence turns into entanglement between the other
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FIG. 3. Plot of the conditional state fidelity ‖
√

ρ
(E1 )
F |0

√
ρ

(E1 )
F |1 ‖

1
versus the amount of localization (σ the same for all Gaussian states)
and macrofraction size |F |, for the case of the state in Eq. (25).
Here the peak positions {μEi |0, μEi |1}i are picked randomly from the
interval [−1, 1], and the graph is averaged over 400 collections of
random samples. Sharp localization σ → 0, and large macrofrac-
tions |F | lead to low conditional state fidelity and hence greater
distinguishability.

subsystems. Consider the following state, in which the system
and environments are coherent relative to the position basis:

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S
⊗

N⊗
j=1

ρEj |i, (35)

where all the pure states are Gaussian wave packets:

∣∣ψS
i

〉 = ∫
dxS f

1
2 (xS|μS|i, σS|i )|xS〉S, (36)

ρEj |i =
∑

k j

tk j ,i

∣∣ϕEj

i,k j

〉〈
ϕ

Ej

i,k j

∣∣
Ej

, (37)

∣∣ϕEj

i,k j

〉 = ∫
dxEj f

1
2 (xEj |μEj |i,k j , σEj |i,k j )|xEj 〉Ej

. (38)

Note that f
1
2 (·) = √

f (·) is the square root of a Gaussian
(which may include a potential phase). In the reference frame
of environment E1,

ρ
(E1 )
SCE2···EN

=
∑
i,k1

pitk1,i

∫
dqS dq′

S dqC dq′
C f

1
2 (qS − qC |μS|i, σS|i ) f

1
2 ∗(q′

S − q′
C |μS|i, σS|i ) f

1
2 (−qC |μE1|i,k1 , σE1|i,k1 )

× f
1
2 ∗(−q′

C |μE1|i,k1 , σE1|i,k1 )|qS〉〈q′
S|S ⊗ |qC〉〈q′

C |C ⊗
N⊗

j=2

∑
k j

tk j ,i

∫
dqEj dq′

Ej
f

1
2 (qEj − qC |μEj |i,k j , σEj |i,k j )

f
1
2 ∗(q′

Ej
− q′

C |μEj |i,k j , σEj |i,k j )|qEj 〉〈q′
Ej

|
Ej

. (39)

Coherence in the environment states (relative to the position
basis in which we change reference frames) leads to entan-
glement between the laboratory frame state and the system
environments. This entanglement can be removed by tracing
out the laboratory state. The small changes in qC will not be
distinguishable. Instead, the best candidate for the perceived
objective information is {pitk1,i}i,k1

—i.e., the original objec-
tivity information mixed with the E1 incoherent statistical
mixedness that has now turned into classical correlations in
the new frame as we have seen with previous examples.

The local system state is ρ
(E1 )
S = ∑

i,k1
pitk1,iρ

(E1 )
S|i,k1

, where
the conditional states are

ρ
(E1 )
S|i,k1

:=
∫

dqC f (−qC |μE1|i,k1 , σE1|i,k1 )

×
[∫

dqS f
1
2 (qS − qC |μS|i, σS|i )|qS〉

]

×
[∫

dq′
S f

1
2 ∗(q′

S − qC |μS|i, σS|i )〈q′
S|S
]
. (40)

The system is conditionally centered around μS|i − μE1|i,k1 ,

with a spread of approximately
√

σ 2
S|i + σ 2

E1|i,k1
.

Observation 7. In other reference frames, the conditional
system states is typically no longer pure, but they can still
be distinguishable. We can consider this a generalized ob-
jectivity, in which the conditional system states are mixed
(instead of conditionally pure) and perfectly distinguishable
in the manner the environment states are.

Heuristically, provided that these new peaks are sufficiently
separated, or that different standard deviations separated by
orders of magnitude, then the conditional states will be
distinguishable. Since we cannot calculate the eigendecom-
position for ρ

(E1 )
S|i,k1

in general, we will instead calculate the
overlap/linear fidelity, which is a lower bound to the fidelity:

Tr
[
ρ

(E1 )
S|i,k1

ρ
(E1 )
S|i′,k′

1

]

=
2σS|iσS|i′ exp

[
−

(
μE1 |i,k1 −μS|i−μE1 |i′ ,k′

1
+μS|i′

)2

2
(
σ 2

E1 |i,k1
+σ 2

E1 |i′ ,k′
1
+σ 2

S|i+σ 2
S|i′
)
]

√(
σ 2

S|i + σ 2
S|i′
)(

σ 2
E1|i,k1

+ σ 2
E1|i′,k′

1
+ σ 2

S|i + σ 2
S|i′
) . (41)

The linear fidelity is small when the relative differences are
greater than the standard deviations, or if σE1|i,k1 are large
compared to σS|i.

Similarly, the environment states, ρ
(E1 )
Ej

=∑
i,k1

pitk1,iρ
(E1 )
Ej |i,k1

, have conditional states

ρ
(E1 )
Ej |i,k1

:=
∑

k j

tk j ,i

∫
dqC f (−qC |μE1|i,k1 , σE1|i,k1 )

[∫
dqEj f

1
2
(
qEj − qC |μEj |i,k j , σEj |i,k j

)|qEj 〉
]

[∫
dq′

Ej
f

1
2 ∗(q′

Ej
− q′

C |μEj |i,k j , σEj |i,k j

)〈q′
Ej

|
Ej

]
.

(42)
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We could calculate their linear fidelity (not shown here):
provided they are separated in position, or if their standard
deviations are very different, then the conditional environment
states will be distinguishable.

When the environment states have coherence, the full
system-environment state gains entanglement in other quan-
tum reference frames. However, this entanglement can be
decohered into classical correlations by tracing out the (trans-
formed) laboratory system. Distinguishability requires the
locations of the new peaks in the new reference frame to be
sufficiently separated, or that the size of the spreads in the new
reference frame be sufficiently different, and can be enhanced
with macrofractions. Once distinguishable, the information
{pitk1,i}i,k1

can be recovered from the environments, and in
turn the original system information. However, the tk1,i com-
ponent is unique to the (E1) frame.

Observation 8. The system information {pi}i from the lab-
oratory frame is unique, in that it is recoverable in all frames.

Note though this is not the same as saying that {pi}i is
objective in all frames, as all the previous and following
examples have shown.

Observation 9. All the information in the system and
environments remains when changing reference frames. How-
ever, this information can become scrambled and prevent the
system information {pi}i from being the only objective infor-
mation in the new frames. Instead, the internal information of
the new environment frame (i.e., mixedness and coherence in
the conditional states) produces new correlations that augment
the original objective system information. Thus, to keep the
exact same objective information, there should be as little in-
ternal conditional information in the environment as possible.

V. PRECISE CONDITIONS FOR PERFECT OBJECTIVITY
IN ALL QUANTUM REFERENCE FRAMES

In general, a discrete SBS state (i.e., containing countably
many terms) can be written as follows:

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S ⊗

N⊗
j=1

ρEj |i, (43)

〈
ψS

i

∣∣ψS
i′
〉 = 0, ∀ i �= i′, (44)

ρEj |iρEj |i′ = 0, ∀ i �= i′,∀ j, (45)

where we have general coherent states on the system and
mixed states on the environment that are perfectly distinguish-
able under different index i. We can write |ψS

i 〉 and ρEj |i in
general as ∣∣ψS

i

〉 = ∑
xS

ψ (xS|i)|xS〉S, (46)

ρEj |i =
∑

xE j ,x
′
E j

t
(
xEj , x′

Ej
|i, j

)|xEj 〉〈x′
Ej

|
Ej

. (47)

The objective information here is {pi}i. However, as the cases
above show, SBS states do not always remain SBS in differ-
ent frames, and if they do, they will often have a different
objective information. In the following theorem, we give the
particular SBS structure required for the same objective infor-
mation in all relevant frames:

Theorem 1. A discrete SBS state ρ
(C)
SE1E2···EN

[Eq. (43)] is
perfectly objective, with the same objective information {pi}i,
in all laboratory and environment reference frames if and only
if it can be written in the following reduced form:

ρ
(C)
SE1···EN

=
∑

i

pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S ⊗

N⊗
j=1

|xEj |i〉〈xEj |i|Ej
, (48)

and satisfying the perfect distinguishability conditions in the
original laboratory frame:〈

ψS
i

∣∣ψS
i′
〉 = 0, ∀i �= i′, (49)

〈xEj |i|xEj |i′ 〉 = 0, ∀i �= i′, ∀ j, (50)

and all environment frames:〈
ψ̃S

i, j

∣∣ψ̃S
i′, j

〉 = 0, ∀i �= i′, ∀ j, (51)

〈xEj |i − xEk |i|xEj |i′ − xEk |i′ 〉 = 0, ∀i �= i′, ∀ j �= k, (52)

where |ψ̃S
i, j〉 = ∑

qS
ψ (qS + xEj |i|i)|qS〉S .

The proof is given in Appendix B1: it proceeds by consid-
ering the general transformed state of the system environment
in frame E1 (without loss of generality) and imposes that the
system spectrum remains {pi}i (which enforces the environ-
ment states ρEj |i conditioned on i be pure) and that SBS is
preserved (which gives the distinguishability conditions).

Thus, not only are the conditional environment states pure,
they must also have nondegenerate separations [Eq. (52)].
This can be easily achieved by introducing randomness to the
precise {xEj |i} terms. An example of perfect objective states is
given in Sec. III A.

However, the orthogonality conditions (51) for the system
states {|ψ̃S

i, j〉}i
in frame Ej are much more nontrivial. It is

possible that the shifts in the wave function from ψ (xS|i) →
ψ (xS + xEj |i|i) can cause overlaps in the conditional system
states in the new frame. We depict this in Fig. 4.

Suppose we start off with a general continuous SBS state
instead of a discrete one:

ρ
(C)
SE1···EN

=
∫

di pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S ⊗

N⊗
j=1

ρEj |i, (53)

∣∣ψS
i

〉 = ∫
dxSψ (xS|i)|xS〉S, (54)

ρEj |i =
∫

dxEj dx′
Ej

t
(
xEj , x′

Ej
|i, j

)|xEj 〉
〈
x′

Ej

∣∣
Ej

, (55)

satisfying distinguishability conditions:〈
ψS

i

∣∣ψS
i′
〉 = 0, ∀ i �= i′, (56)

ρEj |iρEj |i′ = 0, ∀ i �= i′,∀ j. (57)

Corollary 1. A continuous SBS state is perfectly objec-
tive, with the same (possibly continuous) objective informa-
tion {pi}i, in all laboratory and environment reference frames
if and only if it satisfies the same state structure as given in
Theorem 1 (up to a continuous i), that is, with form

ρ
(C)
SE1···EN

=
∫

di pi

∣∣ψS
i

〉〈
ψS

i

∣∣
S ⊗

N⊗
j=1

|xEj |i〉〈xEj |i|Ej
, (58)
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FIG. 4. Top: Curves representing the system conditional states in
the original laboratory frame: they are separated and hence distin-
guishable. Bottom: Both curves are shifted by a different amount as
we move to an environment frame, yet the curves overlap and are no
longer distinguishable.

and all other conditions given in Theorem 1.
Proof. Take the continuous limit on the sums on the system

and environment states from the discrete SBS state,
∑

xS
→∫

dxS ,
∑

xE j
→ ∫

dxEj and follow the same proof: perfect

objectivity collapses those sums to discrete states and all other
conditions follow. �

If we relax the requirement that same objective information
appears, then we can relax the conditionally pure environment
states to incoherent environment states in the x basis:

Proposition 1. A discrete SBS state ρ
(C)
SE1E2···EN

of the fol-
lowing form can be perfectly objective in all frames (C, Ej),
albeit with different objective information:

ρ
(C)
SE1···EN

=
∑

i

pi|ψS|i〉〈ψS|i|S

⊗
N⊗

j=1

∑
xE j

t
(

xEj

∣∣∣i, j
)
|xEj 〉〈xEj |Ej

, (59)

provided it satisfies the perfect distinguishability conditions in
the original laboratory frame

〈ψS|i|ψS|i′ 〉 = 0, ∀i �= i′, (60)

ρEj |iρEj |i′ = 0, ∀i �= i′, (61)

and all environment frames〈
ψ̃

(Ej )
(i,qC|i )

∣∣ψ̃ (Ej )
(i′,q′

C|i′ )

〉 = 0, ∀(i, qC|i ) �= (i′, q′
C|i′ ), (62)

ρ
(Ej )
Ek |(i,qC|i )ρ

(Ej )
Ek |(i′,q′

C|i′ ) = 0, ∀(i, qC|i ) �= (i′, q′
C|i′ ),∀k �= j,

(63)

where ∣∣ψ̃ (Ej )
(i,qC|i )

〉 = ∑
qS

ψ (qS − qC|i|i)|qS〉S, (64)

ρ
(Ej )
Ek |(i,qC|i ) =

∑
qE j

t
(
qEj − qC|i|i, j

)|qEj 〉〈qEj |Ej
. (65)

Note that the values qC|i = q(E1 )
C|i can take depends on the index

i and the original states on E1.
The proof is given in Appendix B2. Note that this

proposition is not an if-and-only-if: we have chosen that
the objective information in frame E1, for example, is

{pit (−qC|i,−qC|i|i, j = 1)}(i,qC|i ), leading to the conditions in
the proposition. An example of Proposition 1 is depicted in
Fig. 5.

In the continuous case, this proposition will hold only up to
some error, e.g., 〈ψ̃ (Ej )

(i,qC|i )|ψ̃
(Ej )
(i′,q′

C|i′ )〉 = δ > 0. With continuous

environments states—even if they are incoherent—will result
in a reduced distinguishability as given in Fig. 2.

Corollary 2. Consider the general discrete SBS state
ρ

(C)
SE1E2···EN

from Eq. (43). If we allow for partial trace in other
frames, the reduced state in those frames may be objective,
provided the reduced state satisfies distinguishability condi-
tions.

That is, we have no particular state-structure restrictions
from the general SBS state [Eq. (43)] (unlike in Theorem 1
and Proposition 1).

If we move from frame C to frame Ek , then trace out the
subsystem C, TrC[ρ (Ek )

SCE1...EN
], then the reduced state could be

objective (provided it satisfies the nontrivial distinguishability
conditions). We did not need to restrict the conditional en-
vironment states to be localized or incoherent—sometimes,
simply tracing out a subsystem can give an SBS state. For
example, the GHZ state (|0000〉 + |1111〉)/

√
2 is entangled

and not SBS, but tracing out a single subsystem and we are
left with an SBS state, (|000〉〈000| + |111〉〈111|)/2.

This corollary implies that the conditional environment
states can have coherences and also shows how important,
intricate, and nontrivial the distinguishability conditions are
to the objectivity of a state, and emphasizes our focus on the
indistinguishability of conditional states in other parts of this
paper.

Proof. From the general discrete SBS state in the frame of
E1, Eq. (B1), we trace out the C subsystem:

ρ
(E1 )
SE2···EN

=
∑
i,qC|i

pit (−qC|i,−qC|i|i, j = 1)

×∣∣ψ̃S
(i,qC|i )

〉〈
ψ̃S

(i,qC|i )

∣∣
S
⊗

N⊗
j=2

ρ
(E1 )
Ej |i,qC|i , (66)

∣∣ψ̃S
(i,qC|i )

〉 = ∑
qS

ψ (qS − qC|i|i)|qS〉S, (67)

ρ
(E1 )
Ej |i,qC|i =

∑
qE j ,q

′
E j

t
(
qEj − qC|i, q′

Ej
− qC|i|i, j

)

×|qEj 〉
〈
q′

Ej

∣∣
Ej

. (68)
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FIG. 5. Example of an objective SBS state described by Proposition 1. Top: Depiction of the state in frame C. The original objective
information is {p0, p1}. The environment E1 has mixed, incoherent states conditioned on i = 0 (p0, top left), and i = 1 (p1, top right). Bottom:
When moving into the quantum reference frame of E1, the system states have been shifted such that they still remain distinguishable. The
resulting objective information is {p0t0, p0t1, p1t2, p1t3}.

By choosing {pit (−qC|i,−qC|i|i, j = 1)}(i,qC|i ) as the new ob-
jective information, this reduced state will have SBS provided
it satisfies distinguishability conditions:〈

ψ̃S
(i,qC|i )

∣∣ψ̃S
(i′,q′

C|i )
〉 = 0, ∀(i, qC|i ) �= (

i′, q′
C|i
)
, (69)

ρ
(Ek )
Ej |i,qC|iρ

(Ek )
Ej |i′,q′

C|i
= 0, ∀(i, qC|i ) �= (

i′, q′
C|i
)
, ∀ j �= k.

(70)

Table I summarizes the results in this section. �

VI. OBJECTIVITY IN A DYNAMIC SYSTEM AND
TWO ENVIRONMENTS

In the prior sections, we focused primarily on calculating
the distinguishability of conditional system and environment
states. This distinguishability forms a lower bound to an ideal
objective state; however, it is missing a quantification of the
nonobjective correlations between the system and environ-
ments. In this section, we consider a numerical model that
allows us to fully explore the divergence from an ideal ob-
jective state with the SBS.

We analyze the broadcast probabilities which show that
the information is different in different reference frames. The
investigation of mutual information between environments il-
lustrates that strong independence of environments is also not
conserved between reference frames. We consider a couple

of cases as illustration of phenomena occurring when chang-
ing between different reference frames in an information
broadcasting scenario. We performed a series of numerical
experiments. Note that a computer’s memory cannot store
an infinite number of data needed to fully describe quantum
systems in a continuum of space coordinates.

To provide an conceptual image of the dynamical scenario,
we consider a toy model where the coordinate system is dis-
crete and organized as a ring of size D with all coordinates

TABLE I. Summary of the minimal specialized SBS state struc-
ture required for perfect objectivity in other quantum reference
frames (QRFs), aside from detailed distinguishability conditions.

Objectivity type State structure requirement

Objective in all QRFs, with the
same classical information {pi}

All environment conditional
states are pure in x basis and

localized (Theorem 1, Sec. III A)
Objective in all QRFs, but with
different objective information

All environment conditional
states are incoherent and mixed

in x basis (Proposition 1,
Sec. III B, Sec. IV B)

A reduced state is objective in all
QRFs, with different objective
information

Environment conditional states
can be coherent (Corollary 2,

Sec. IV C)
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from the finite set {0, . . . , D − 1} with the metric of the finite
field ZD. This coordinate simplification is similar in spirit to
the lattice Ising model.

The process of information propagation is governed by
relevant Hamiltonians describing the time evolution of inter-
acting subsystems. Here we consider a simple scenario with a
central system S, interacting with two environments E1 and E2

observed from the point of view of a noninteracting laboratory
frame C. The reference frame transformation shifts from the
point of view of C to the point of view of E1.

The general interaction H between subsystems S and
{Ei}N

i=1 can be decomposed into several terms:

H =
N∑

i=1

D−1∑
s=0

|s〉〈s|S ⊗ H (s)
Ei︸ ︷︷ ︸

central interaction

+
N∑

i=1

HEi︸ ︷︷ ︸
self-evolution

+
N∑

i �= j=1

HEi,Ej︸ ︷︷ ︸
environment interaction

+ HS,E1,···EN︸ ︷︷ ︸
global interaction

,

(71)

where subindices enumerates subsystems on which the given
part of the total Hamiltonian acts. We note that the form of
the central interaction part ensures that the evolution of each
of the environments depends on the state of the central system
and thus is responsible for imprinting information about it.

In a typical measurement scenario one usually assumes
that the evolution is dominated by the central interaction, and
then the so-called generalized von Neumann measurement is
performed [35,36]. It is reasonable to assume that this part
is acting only for a limited period of time, as one expect the
measurement to occur after a finite number of time units.

We define the time unit t = 1 as the time over which the
central interaction is active. We also define the energy scale as
relative to the strength of the central interaction. We assume
that the self-evolution and the interaction of environments is
of two orders weaker and the global interaction (that is in
most cases a sort of environmental noise) to be weaker of
three orders than the central interaction. Since in this paper
the Hilbert space is assumed to form a coordinate basis it is
natural to pay a particular attention to environment interac-
tions with strengths depending on the distance of subsystems.

To be more specific, the central interaction H (s)
S,Ei

is defined
in a way that after a unit of time the state |k〉Ei

is trans-
formed to |k ⊕D s〉Ei

, where ⊕D is the addition modulo D.
The environment interaction Hamiltonian HEi,Ej is defined in
a way that propagates jumps of states of a pair of interacting
subsystems towards each other with rate of the jumps given by
0.01
1+r , where r is the distance between subsystems, and 0.01 is
the coupling constant (two order of magnitudes less than the
self-evolution and measurement interaction). A self-evolution
of environments allows for jumps towards neighboring states,
leading to a slow spread of the localization.

Since global interaction is conceptualized as being caused
by unintended jumps beyond control, the rate of each possible
jump is regarded as a uniform random number between 0 and
the coupling constant equal to 0.001 to model the assumption
that this kind of force is of three orders weaker than the
measurement interaction.

TABLE II. Considered dynamical scenarios for a system inter-
acting with two environments E1, E2. Interaction details for HE1 , HE2 ,
and HE1,E2 are in the discussion following Eq. (71). The various initial
states are given from Eq. (72) to (76), where the labeling ρSE1E2 de-
notes where that subsystem is mixed (m), pure (p), blurred/partially
mixed (b), or entangled (E).

Case Environment Global Initial
label Self-evolution interaction interaction state

1.1 – – – ρmpp

1.2 – – – ρmbb

1.3 – – – ρmEE

1.4 – – – ρmmp

1.5 – – – ρmpm

2.1 HE1 + HE2 – – ρmpp

2.2 Random – – ρmpp

3.1 – HE1,E2 – ρmpp

3.2 – Random – ρmpp

4 HE1 + HE2 HE1,E2 Random ρmpp

It has been observed [37] that the capacity of an environ-
ment to receive information about the central system depends
on its purity: the higher is the entropy of the subsystem,
the less additional information it can gain. In particular one
expects that the completely mixed state is not able to perceive
the observed entity.

In our investigation we consider various joint states of the
central system with two environments. The joint state that
maximizes the information flow, and thus is most interesting,
is the state

ρmpp := ρmixS ⊗ |0〉〈0|E1
⊗ |0〉〈0|E2

, (72)

where ρmix := 1
D

∑D−1
i=0 |i〉〈i| is the maximally mixed state on

the D-dimensional ring. To see how mixedness of environ-
ments influences information flow we consider a system with
slightly blurred environments:

ρmbb := ρmixS ⊗ ρblurE1 ⊗ ρblurE2 , (73)

where

ρblur := 0.8 × |0〉〈0| + 0.1 × |1〉〈1| + 0.1 × |D − 1〉〈D − 1|.
(74)

We consider also the cases when only one of the environments
is mixed:

ρmmp := ρmixS ⊗ ρmixE1 ⊗ |0〉〈0|E2
, (75a)

ρmpm := ρmixS ⊗ |0〉〈0|E1
⊗ ρmixE2 . (75b)

Another case that we find interesting to investigate is the
situation when the environments are maximally entangled, as
this case revealed different phenomena when changing frames
in Ref. [30]. We consider the state

ρmEE := ρmixS ⊗ |〉〈|E1E2
, (76)

where |〉E1E2
:= 1√

D

∑D
i=0 |i〉E1

|i〉E2
.

We summarize all cases we investigate in the dynamical
scenario in Table II.
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From the perspective of external observer C, the time-
dependent tripartite state consists of the central object S and
two environments E1 and E2. From the frame of the first en-
vironment, E1, the relevant state consists of the central object,
S, the external observer, C, and the second environment, E2.
We refer to these states as ρ

(C)
SE1E2

and ρ
(E1 )
SCE2

, respectively.
The core part of the SBS is the spectrum of the probability

distribution that is broadcast from system to environments.
This spectrum is given by

p(C)
i := 〈i|STrE1E2

(
ρ

(C)
SE1E2

)|i〉S, (77a)

p(E1 )
i := 〈i|STrCE2

(
ρ

(E1 )
SCE2

)|i〉S, (77b)

where TrE1E2 and TrCE2 denotes partial trace over subsystems
E1 and E2 and C and E2, respectively.

The conditional states [cf. Eq. (30)] are

ρ
(C)
E1|i := (

1/p(C)
i

)〈i|STrE2

(
ρ

(C)
SE1E2

)|i〉S, (78a)

ρ
(C)
E2|i := (

1/p(C)
i

)× 〈i|STrE1

(
ρ

(C)
SE1E2

)|i〉S, (78b)

ρ
(E1 )
C|i := (

1/p(E1 )
i

)× 〈i|STrE2

(
ρ

(E1 )
SCE2

)|i〉S, (78c)

ρ
(E1 )
E2|i := (

1/p(E1 )
i

)× 〈i|STrC
(
ρ

(E1 )
SCE2

)|i〉S, (78d)

where TrE1 , TrE2 , and TrC denote partial trace over relevant
subsystems. For the conditional states {ρ (·)

·|i }D−1
i=0 we calculate

their two averages, weighted [cf. Eq. (23)],

D−1∑
i �= j=0

√
p(·)

i p(·)
j

∥∥∥√ρ
(·)
·|i
√

ρ
(·)
·| j

∥∥∥
1
, (79)

and unweighted,

1

D(D − 1)

D−1∑
i �= j=0

∥∥∥√ρ
(·)
·|i
√

ρ
(·)
·| j

∥∥∥
1
. (80)

For the sake of clarity [cf. Eq. (20)] we denote the fidelity
terms as

B(C)
E1

(i, j) :=
∥∥∥√ρ

(C)
E1|i
√

ρ
(C)
E1| j

∥∥∥
1
, (81a)

B(C)
E2

(i, j) :=
∥∥∥√ρ

(C)
E2|i
√

ρ
(C)
E2| j

∥∥∥
1
, (81b)

B(E1 )
C (i, j) :=

∥∥∥√ρ
(E1 )
C|i

√
ρ

(E1 )
C| j

∥∥∥
1
, (81c)

B(E1 )
E2

(i, j) :=
∥∥∥√ρ

(E1 )
E2|i

√
ρ

(E1 )
E2| j

∥∥∥
1
. (81d)

In order to contrast strong versus weak independence
between observing subsystems we also calculate the mean
conditional quantum mutual information (Definition 2):

I (C)
mean :=

D−1∑
i=0

p(C)
i

[
H2
(
ρ

(C)
E1|i
)+ H2

(
ρ

(C)
E2|i
)− H2

(
ρ

(C)
E1E2|i

)]
,

(82a)

I (E1 )
mean :=

D−1∑
i=0

p(E1 )
i

[
H2
(
ρ

(E1 )
C|i

)+ H2
(
ρ

(E1 )
E2|i

)− H2
(
ρ

(E1 )
CE2|i

)]
,

(82b)

where H2(·) is von Neumann entropy and the conditional
states are

ρ
(C)
E1E2|i := (

1/p(C)
i

)× 〈i|Sρ (C)
SE1E2

|i〉S, (83a)

ρ
(E1 )
CE2|i := (

1/p(E1 )
i

)× 〈i|Sρ (E1 )
SCE2

|i〉S. (83b)

There are dynamical situations when the mean mutual
information reaches some value and does not deviate signif-
icantly (up to some fluctuations) from it further in time. We
refer to this value as the value of saturation:

I (C)
sat := lim

T →∞
1

T

∫ T

0
I (C)
mean(t ) dt, (84a)

I (E1 )
sat := lim

T →∞
1

T

∫ T

0
I (E1 )
mean(t ) dt, (84b)

from the point of view of C and E1, respectively. The fluctua-
tions of the mean mutual information are defined as

σ
(C)
I :=

{
lim

T →∞
1

T

∫ T

0

[
I (C)
mean(t ) − I (C)

sat

]2
dt

} 1
2

, (85a)

σ
(E1 )
I :=

{
lim

T →∞
1

T

∫ T

0

[
I (E1 )
mean(t ) − I (E1 )

sat

]2
dt

} 1
2

, (85b)

for reference frames of C and E1, respectively. We also define
the time of saturation t (C)

sat from the perspective C (t (E1 )
sat from

the perspective E1), as a time when the mean mutual informa-
tion reaches the value I (C)

sat − σ
(C)
I (I (E1 )

sat − σ
(E1 )
I ) for the first

time.
We performed a series of numerical simulations in order

to investigate how well the SBS form is preserved in both
the frames of the external observer, C, and the first environ-
ment, E1. For the cases discussed below we take D = 12.
This dimension has been chosen as a compromise between
computational effort and modeling the dependence of behav-
iors of subsystems on their spatial separations. The long-time
averages are calculated over time points between 50 000 and
1 000 000 with time step 50 000.

The reference frame transformation Ŝ(C→E1 )
position satisfying

Eq. (4) is, in this case, a permutation of indices of rows
and columns of a tripartite D3 dimensional density matrix.
As such the spectrum of the initial density matrix remains
invariant. For the case of dimension D = 12 we have found
that the unitary transformation over D3 = 1728 dimensional
joint tricoordinate space has character (trace) 144, contains
144 irreducible subspaces of dimension 1, and 792 irreducible
subspaces of dimension 2. We have directly checked that
χ [Ŝ(C→E1 )

position ] = D2, where χ [·] is the character (trace) of a
transformation, for D � 25 and conclude that this is a general
property of reference frame transformations as D → ∞.

Below we summarize how the properties relevant for per-
ceived objectivity behave in our dynamical model. The change
in the broadcast spectrum of probabilities (Sec. VI A), the
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FIG. 6. Selected probabilities in the reference frame E1 for Cases
1.1 and 1.2. Note that for Cases 1.3 and 1.4 the probability p(E1 )

0 =
1
D ≈ 0.083 and is constant in time. For Case 1.5 p(E1 )

0 is identical as
in Case 1.1. (Cases are given in Table II.)

dynamics and overall volume of mutual information
(Sec. VI B), the varying distinguishability of subsystems
(Sec. VI C), and the Holevo and quantum mutual information
between central system and subenvironments (Sec. VI D) in
different frames provides a concrete illustration of the main
premise of this paper: what is objective from one point of
view may not be objective from another point of view. All the
cases referred to in the following section have been labeled in
Table II. The full details are described in Appendix C.

A. Probabilities

The probabilities of the central system are key for the spec-
trum in an objective state. From our numerical calculations,
we find that all probabilities (of the central system spectrum)
{p(C)

i }D−1
i=0 from laboratory C’s point of view are constant and

uniform over time, except in Case 4 (cases given in Table II)
where the added global interaction influences the central sub-
system and thus modifies its spectrum.

The system-environment generalized measurement inter-
action has been designed such that the effective measurement
occurs by time t = 1. This occurs without disturbance in
Cases 1.1 and 1.5 (Table II), where there are no other in-
teractions, and where the initial state of E1 in C’s frame of
reference, ρ

(C)
E1

(t ) := TrSE2 (ρ (C)
SE1E2

(t )), is pure (see Fig. 6). In

these two cases, p(E1 )
0 ≈ 1 at time t = 1, i.e., implying that the

central system state is close to pure at the end of the measure-
ment, which corresponds to a trivial kind of objectivity in the
frame of E1 (much like Example 1). Alternatively, we can say
that E1’s capacity was not used.

If the initial environment state ρ
(C)
E1

is slightly mixed in

Case 1.2, the value of the probability p(E1 )
0 in the frame of

E1 diverges from 1, proportional to the mixedness in the
original E1 state. In Cases 1.3 and 1.4, when p(E1 )

0 was either
maximally mixed or a part of a maximally entangled state
(which means that the local state of E1 is identical) the values
of probabilities {p(E1 )

i }D−1
i=0 remain uniform at the time t = 1,

meaning there was no information transfer at all.
The probabilities in the frame of E1 for all other cases

behave very similarly to Case 1.1 up to time t = 1, despite
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FIG. 7. Probabilities p(E1 )
0 for cases from the groups 2, 3, and 4 in

the reference frame of E1, which have various interactions in addition
to central measurement Hamiltonian. Inset: Probabilities during time
[0,1] where the measurement-like Hamiltonian dominates. (Cases
given are in Table II.)

their interactions, since their evolution on the short timescale
is still dominated by the measurement interaction (see Fig. 7).

B. Strong independence and the conditional mutual information

The mean mutual information between the conditional en-
vironment informs us on whether the subsystems have strong
or weak independence, the former of which is a condition
of spectrum broadcast structure: a small (ideally zero) mean
mutual information denotes strong independence.

In Figs. 8 and 9 we give the plots for how the mean mutual
information I (E1 )

mean behaves over time, in the frame of E1. We
find that the mean mutual information typically starts from the
value Imean = 0, reaches local maximum close to 1.7 exactly
at the time t = 0.5 and returns close to 0 for the time t = 1.
The only exception from this behavior is Case 1.4 (where
the initial state of E1 was mixed in the laboratory frame C),
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FIG. 8. Plot of I (E1 )
mean (the mean mutual information seen from

the reference frame of the first environment, E1) for Cases 1.1, 1.2,
1.3, and 1.4. In Case 1.5 the function is constant and equal to 0.
This shows the cases when I (E1 )

mean(t = 1) = 0. The plot for Case 1.1
is identical for Cases 2.1 and 3.1. (Cases are given in Table II.)
When the mutual information is low, the environments have strong
independence.
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of E1, I (E1 )

mean for Cases 2.2, 3.2, and 4; cf. Table III. Inset: mean mu-
tual information during times t = [0, 1] where the measurement-like
Hamiltonian dominates. (Cases given are in Table II.) As the mutual
information is large as time increases, the environments do not have
strong independence.

and we are observing the system ρ
(E1 )
SCE2

from a point of view
of a completely random observer. In that case the mutual
information starts with the maximal value equal 3.585 and
gradually drops. For all cases, I (E1 )

mean(t = 1) ≈ 0 (with very
small nonzero value in the cases with random interactions).

Cases 1.1, 2.1, and 3.1, which all have the same initial
states, have very similar values of I (E1 )

mean in each moment of
time, which can be seen in Fig. 8. Furthermore, the mu-
tual information is 0 after time t = 1 in reference frame E1.
Thus, while the observing subsystems C, E2 initially develop
conditional correlations during times t = [0, 1], they satisfy
strong independence thereafter, a necessary condition for ideal
objectivity (Definition 2).

The second common pattern is shown in Fig. 9, where
mean mutual information in the reference frame of E1, after
approaching the value 0 at the time t = 1, will gradually
increase to some saturation level, with slight fluctuations.
This happens in Cases 2.2, 3.2, and 4, where some random
Hamiltonian is present (cf. Table III). In all other cases the
mean mutual information in reference frame E1 is 0 after the
time t = 1.

On the other hand, from the point of view of the external
laboratory C, the mean mutual information is constant when
there is no interaction between environments (Case groups 1
and 2). In this reference frame, cases with inter-environmental
interaction (groups 3 and 4) lead to the mean mutual informa-

TABLE III. Dynamics of mean mutual information I (E1 )
sat in the

reference of frame of the first environment, E1; σ
(E1 )
I describes the

fluctuation and t (E1 )
sat is the time of saturation [cf. Fig. 9 and Eqs. (84)

and (85)].

2.2 3.2 4

I (E1 )
sat 2.513 2.867 3.508
σ

(E1 )
I 0.168 0.022 0.004

t (E1 )
sat 150 50 500

TABLE IV. Dynamics of mean mutual information in the frame
of reference of the external laboratory C. Values at the times t =
0.5, 1 shows the gradual increase (cf. Fig. 12 in Appendix C).

3.1 3.2 4

I (C)
mean(0.5) 0.002 0.023 0.004

I (C)
mean(1) 0.006 0.070 0.012

I (C)
sat 2.769 5.740 3.521
σ

(C)
I 0.949 0.032 0.004

t (C)
sat 30 50 60

tion gradually increasing (without local maxima) till the point
of saturation, t (C)

sat . The parameters of this behavior are given
in Table IV.

We see that the tripartite states typically have strong inde-
pendence while in the laboratory frame C, but this weakens
when moving to the environment frame E1.

We observe that in the short time range, before the interac-
tion of environments with central system has fully occurred,
environments are more independent in the laboratory’s frame,
whereas after the interaction the independence is stronger for
environmental frame.

For a long timescale we distinguish two situations: If the
environmental interaction decreases with distance (Case 3.1),
then the strong independence between C and E2 occurs in the
environment frame E1, but not between E1 and E2 in frame
C. Meanwhile, if the environment interaction is random and
does not decrease with distance (Case 3.2), there is no strong
independence in either frames. In this second situation, the
mutual information happens to be almost exactly twice as
large (differing by 2% at most) in C’s frame compared to
E1’s frame, suggesting that there is greater independence in
frame E1. When global interaction is present, then the mutual
information is the same in both frames (differing by 0.1% at
most) for all times.

Overall, in the cases we consider, strong independence
can be maintained in original frame C, but not the envi-
ronment frame E1. Furthermore, environment-environment
interactions destroy strong independence.

C. Distinguishability

Distinguishability is crucial for observers to determine the
central system’s spectrum. In the reference frame of C the
upper bound that describes the error in distinguishing condi-
tional states, Eq. (23), is equal 0 at the time t = 1 for Cases
1.1, 2.1, and close to 0 for Cases 2.2 and 3.1. It is also
0 for the subsystem E2 in Case 1.4 (when E2 is pure and
E1 is maximally mixed) and for subsystem E1 in Case 1.5
(when E1 is pure and E2 is maximally mixed). That is, the
distinguishability error is (close to zero) for situations without
random interenvironmental interactions.

For the other cases which do have random interactions,
error the bound is significantly higher, viz., for Case 3.2 the
bound is between 0.38 and 0.39, equal to 0.169 for Case 4.

Similarly, from the perspective of E1, the distinguishability
error upper bound (23) is low (below 0.05 for at least one
subsystem C or E2) when there are no random interactions and
the initial state of E1 is pure: these correspond to Cases 1.1,
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TABLE V. Upper bound to distinguishability error [Eq. (23)] at
the time t = 1 for cases without random inter-environmental interac-
tions, in the reference frame of C for subsystems E1 and E2 and in
the reference frame of E1 for subsystems C and E2.

Frame Subsystem 2.1 2.2 3.1

C E (C)
1 0.000 0.28 0.050

C E (C)
2 0.000 0.025 0.050

E1 C (E1 ) 0.040 0.109 0.051
E1 E (E1 )

2 0.000 0.000 0.011

2.1, 2.2, and 3.1, and also 1.5 (that was 0 for E1 and above 1
for the initially maximally mixed E2). This is summarized in
Table V.

Overall, the effect of moving frame is thus: while it is easier
to distinguish E1 in laboratory C frame, while E2 has the lower
distinguishability error when in the E1 frame.

D. Holevo information and mutual information between central
system and environments

The analysis in the previous subsections have shown that
the SBS structure is generally not preserved between ref-
erence frames. Another aspect of quantum Darwinism and
SBS is the information propagation measured by the quantum
mutual information, and by the (classical) Holevo information
transfer from the central system to environments. To this end,
we calculate the quantum mutual information, as well as the
Holevo information by considering a hypothetical measure-
ment of the central system in its eigenbasis and the ensemble
of steered states of each of the environments.

Figure 10 shows the quantum mutual information between
the central system S and subsystem E1 (C) in the reference
frame of C (E1). Both Holevo information (Fig. 11) and quan-
tum mutual information of both subenvironments are equal
in frame C and equal for the environment E2 in frame E1

if there is no global interaction (Cases 1, 2, and 3), thus
satisfying one requirement for SBS. The low quantum mutual
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FIG. 10. The quantum mutual information between the central
system S and subsystem E1 (C) in the reference frame of C (E1). A
high quantum mutual information often suggests objectivity. (Cases
are given in Table II.)
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FIG. 11. The Holevo information between central system S and
subsystem E1 (C) in the reference frame of C (E1). Compared with
Fig. 10, the Holevo information is very similar to the quantum mutual
information, aside from Case 3.2 in frame E1.

information in frame E1 compared to high quantum mutual
information in frame C also suggests that the central system
and C are trivially objective, i.e., that only one probability in
the spectrum is substantial (cf. Sec. VI A).

On the other hand, the Holevo and quantum mutual infor-
mation differ for the subsystem C in frame E1 in most Cases.
For Case 1.3 (with an initially entangled environment state)
the quantum mutual information is constant and is equal to
the half of the mutual information of a maximally entangled
state, and Holevo information is 0. If there is self-evolution or
environment interaction (Cases 2 and 3), the quantum mutual
information is also significantly higher that Holevo informa-
tion, with exception for Case 2.1 when they are equal. In
general, the state C in frame E1 develops quantum correlations
with the central system, reflecting the results from the prior
sections.

VII. CONCLUSION

We examined the transformation of objectivity in different
quantum reference frames. We used the quantum reference
frame formalism of Giacomini et al. [30], in which local and
global properties are frame-dependent and can interchange,
and analyzed the structure of objective states in the frame of
their environments.

Under perfect localization, we showed how nondegenerate
relative positions is the key factor in ensuring that objectivity
is consistent across different quantum reference frames. This
can be done by randomly choosing all required positions from
a continuous interval—as the probability of two random real
numbers being equal is zero. Environment-state coherences
introduce entanglement between system and environments,
which then require discarding of environments to remove.
Meanwhile, environment-state statistical mixedness, i.e., in-
ternal classical noise, introduces new classical correlations
in addition to the original classical objective correlations.
Thus, in general, each reference frame has a different set of
objective information that involves the original statistics of
the environment associated with the reference frame. Nev-
ertheless, the original system information is recoverable by
taking the appropriate marginal of the information distribu-
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tion. Hence, the objective information of the system in the
original laboratory frame is unique and exists consistently in
all frames—although typically the system-environment state
no longer has an objective state form in other frames.

We then considered systems and environments with a
nonzero spread over position. Distinguishability requires ei-
ther sufficiently separated (nondegenerate) relative positions,
or large differences in spread of different conditional states.
Objectivity becomes “blurred” in different frames due to the
continuous spread in the environment states, and the greater
the blurring, the large the macrofractions are required in the
new frame in order to recover a form of objectivity.

We found that the best candidate of objective information
finds the system in conditional mixed states that are dis-
tinguishable, rather than the conditional pure system states
strictly required of quantum Darwinism. This suggests a gen-
eralized objectivity, i.e., where the system is conditionally
mixed and perfectly distinguishable like the environments.
Furthermore, only a strict subset of all objective states is
perfectly robust across quantum reference frames—when its
observed environments are also objective, i.e., having an
invariant SBS [13]. This suggests that objective states is
consistent under different frames only if it system and envi-
ronments have similar structure, i.e., all conditionally pure, or
all conditionally mixed.

We then proved that perfect objectivity holds in all labo-
ratory and environment frames if and only if the environment
states are pure and perfectly localized in the position basis
conditioned on i of the system information. An open question
is how states close to this specialized form of SBS behave
under quantum reference frame transformations.

Finally, we examined the dynamical emergence
of objectivity in different quantum reference frames,
explicitly demonstrating how changing frames affects the
objective probabilities and degrades spectrum broadcast
structure by weakening strong independence and reducing
distinguishability.

Quantum Darwinism is an approach towards understanding
the quantum-to-classical transition, examining how hypo-
thetical observers may acquire objective information about
a common system. Observers may have different reference
frames, which subsequently affects the information they can
obtain. We have shown that the system’s objective information
is recoverable in all frames, despite the interchangeability
of the local and global statistics. At the same time, our
work demonstrates the rise of extra frame-dependent objec-
tive information, and the robustness (or otherwise) of various
objective state structures. In the strictest sense, objectivity is
subjective across quantum reference frames. This work opens
up the pathway to understanding quantum Darwinism and its
intersection with relativity. On a more philosophical level the
considerations are tightly related to the problem of Wigner’s
friend [38] gedanken experiment.

After the completion of this paper, we were made aware of
independent work on a similar topic: Ref. [39] examines dy-
namical aspects of quantum reference frame transformations
and objectivity, and thus their results are complementary to
our results presented here.
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APPENDIX A: OBJECTIVITY WITH CONTINUOUS
PROBABILITIES

In the main paper, the branch structure of the objective state
is typically discrete, indexed by {i} and summed. However,
we can consider the more general situation in which this {i}
becomes continuous, even in the laboratory frame. A GHZ-
like continuous objective state is the following:

ρ
(C)
SE1E2···EN

=
∫

dxSψ (xS )|xS〉〈xS|S
⊗ |φ1(xS )〉〈φ1(xS )|E1

⊗ · · · ⊗ |φN (xS )〉〈φN (xS )|EN
, (A1)

where ψ (xS ) are the continuous probabilities, and {φi}i are
bijective (one-to-one and onto) functions. One-to-oneness is
necessary so that the environments Ei positions are unique
for any different system position xS , and hence are always
perfectly correlated with the system position xS . For simplic-
ity, we will also take {φi}i being onto, which ensures that the
inverse is also one-to-one.

In the quantum reference frame of the environment E1, the
joint state has the form

ρ
(E1 )
SCE2···EN

=
∫

dqCψ (φ−1
1 (−qC ))

× |φ−1
1 (−qC ) + qC〉〈φ−1

1 (−qC ) + qC |S ⊗ |qC〉〈qC |C

⊗
N⊗

j=2

|φ j (φ−1
1 (−qC )) + qC〉〈φ j (φ−1

1 (−qC )) + qC |Ej
.

(A2)

The original probabilities ψ (·) still exist—as the original con-
ditional environment states are pure in the position basis (cf.
Theorem 1). In the frame E1, there is an integral over qC

rather than xS . In this particular scenario, objectivity requires
distinguishability for different qC . Hence, φ−1

1 (−qC ) + qC and
{φ j (φ−1

1 (−qC )) + qC} j must also be one-to-one functions—
so that none of the new positions become degenerate (and
subsequently reduce conditional distinguishability).

Note that the composition of one-to-one functions is one-
to-one; but sum of one-to-one functions is not necessarily
one-to-one: a sufficient but not necessary condition is that
d

dx
φi(φ−1

1 (x)) > 1 or that
d

dx
φi(φ−1

1 (x)) < 1 for all x. Hence

the state given in Eq. (A1) is not always objective for any set
of one-to-one functions ψ (·), φ j (·).
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APPENDIX B: PROOF OF CONDITIONS FOR
PERFECT OBJECTIVITY

1. Proof of Theorem 1

Here we prove the state structure and conditions for an SBS
state to be objective, with the same objective information, in
all laboratory and environment quantum reference frames.

Proof. In the new environment frame E1, the system-
environment state has general form:

ρ
(E1 )
SCE2···EN

=
∑

i

pi

∑
qC ,q′

C

∑
qS,q′

S

ψ (qS − qC |i)ψ∗(q′
S − q′

C |i)|qS〉〈q′
S|S

⊗ t (−qC,−q′
C |i, j = 1)|qC〉〈q′

C |C

⊗
N⊗

j=2

∑
qE j ,q

′
E j

t
(
qEj − qC, q′

Ej
− q′

C |i, j
)|qEj 〉〈q′

Ej
|
Ej

, (B1)

where note that in t (−qC,−q′
C |i, j = 1), only j = 1 is fixed.

The general reduced system state is

ρ
(E1 )
S =

∑
i

pi

∑
qC

t (−qC,−qC |i, j = 1)

×
∑
qS ,q′

S

ψ (qS − qC |i)ψ∗(q′
S − qC |i)|qS〉〈q′

S|S. (B2)

If the same initial objective information {pi}i is maintained,
the system must have {pi}i as its spectrum, even in the frame

E1. Hence, we must be able to decompose it as ρ
(E1 )
S

!=∑
i pi|ψ̃S

i 〉〈ψ̃S
i |S , where |ψ̃S

i 〉 = ∑
qS

T (qS )|qS〉S are the new
eigenstates of S in the frame E1 with some coefficients T (qS ):

ρ
(E1 )
S|i =

∑
qC

t (−qC,−qC |i, j)

×
∑
qS ,q′

S

ψ (qS − qC |i)ψ∗(q′
S − qC |i)|qS〉〈q′

S|S (B3)

=
(∑

qS

|qS〉S

)⎛⎝∑
q′

S

〈q′
S|S

⎞
⎠

×
∑
qC

(
ψ (qS − qC |i)ψ∗(q′

S − qC |i)
×t (−qC,−qC |i, j = 1)

)
(B4)

!=
∑

i

pi|ψ̃S
i 〉〈ψ̃S

i |S (B5)

=
(∑

qS

T (qS )|qS〉S

)⎛⎝∑
q′

S

T ∗(q′
S )〈q′

S|S

⎞
⎠. (B6)

The coefficient
∑

qC
(· · · ) term in Eq. (B4) must be factoriz-

able into independent terms involving qS and q′
S:

T (qS )T ∗(q′
S )

!=
∑
qC

ψ (qS − qC |i)ψ∗(q′
S − qC |i)

× t (−qC,−qC |i, j = 1). (B7)

The only way to factorize this is if there is only one nonzero
term in the sum, i.e., if and only if

t (−qC,−qC |i, j = 1)
!= δ

(−qC − xEj=1|i
)
. (B8)

Thus, the original conditional environment states ρE1|i of en-
vironment E1 are pure and incoherent in the x basis:

ρ
(C)
E1|i =

∑
xE1 ,x′

E1

t
(
xE1 , x′

E1
|i, j = 1

)|xE1〉〈x′
E1

|
E1

!= |xE1|i〉〈xE1|i|. (B9)

This holds analogously for objectivity in any other envi-
ronment quantum reference frame. Hence, we require that
all conditional environment states are pure, leaving us with
system-environment state structure in the original laboratory
frame and in the environment E1 frame, respectively:

ρ
(C)
SE1···EN

=
∑

i

pi|ψS
i 〉〈ψS

i |S ⊗
N⊗

j=1

|xEj |i〉〈xEj |i|Ej
, (B10)

ρ
(E1 )
SCE2···EN

=
∑

i

pi|ψ̃S
i 〉〈ψ̃S

i | ⊗ |−xE1|i〉〈−xE1|i|C

⊗
N⊗

j=2

|xEj |i − xE1|i〉〈xEj |i − xE1|i|Ej
, (B11)

|ψ̃S
i,( j=1)〉 :=

∑
qS

ψ
(
qS + xEj=1|i|i

)|qS〉S. (B12)

The conditional states already have strong independence, and
so the final requirement of SBS objectivity is perfect distin-
guishability:

〈xEj |i − xEk |i|xEj |i′ − xEk |i′ 〉 = 0, ∀i �= i′, j �= k, (B13)

〈ψ̃S
i, j |ψ̃S

i′, j〉 = 0, ∀i �= i′. (B14)

We should already have that 〈ψS
i |ψS

i′ 〉 = 0, 〈xEj |i|xEj |i′ 〉 =
0 ∀ i �= i′ as this is necessary for the state in the laboratory
frame to be objective.

2. Proof of Proposition 1

Here we prove that a particular SBS state structure—with
relevant distinguishability conditions—will be objective in
all laboratory and environment frames, albeit with different
objective information.

Proof. Recall the general reduced state of the system in
the frame E1, Eq. (B2). If we now have a new objective
information, then there will be some eigendecomposition of
the system with new probabilities p̃ĩ:

ρ
(E1 )
S =

∑
ĩ

p̃ĩ|ψ̃ĩ〉〈ψ̃ĩ|. (B15)

The reduced system state is

ρ
(E1 )
S =

∑
i

pi

∑
qC

t (−qC,−qC |i, j = 1)

×
∑
qS,q′

S

ψ (qS − qC |i)ψ∗(q′
S − qC |i)|qS〉〈q′

S|S. (B16)
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Note that j = 1 is fixed, while i is not fixed. Recall how in
the situation when we had the same objective information, the
coefficient t (−qC,−qC |i, j = 1) was a Dirac δ. However, as
we are not requiring the same objective information here, we
can relax this condition.

Instead, we can identify
∑

qS
ψ (qS − qC |i)|qS〉S =: |ψ̃ĩ〉 as

the conditionally pure states, and impose that they are orthog-
onal, such that the system decomposition is

ρ
(E1 )
S =

∑
i,qC|i∈CE1 |i

p̃(i, qC|i )
∣∣ψ̃(i,qC|i )

〉〈
ψ̃(i,qC|i )

∣∣, (B17)

p̃(i, qC|i ) = pit (−qC|i,−qC|i|i, j = 1), (B18)∣∣ψ̃(i,qC|i )
〉 = ∑

qS

ψ (qS − qC|i|i)|qS〉S, (B19)

with new objective information
{pit (−qC|i,−qC|i|i, j = 1)}(i,qC|i ), and where qC = q(E1 )

C|i
has a dependence on i and on the environment frame (here,
E1). Hence, the sets CE1|i describe the possible values qC can
take given index i and environment frame E1. The conditional
system states need to be distinguishable for this to be a valid
decomposition:〈

ψ̃(i,qC|i )
∣∣ψ̃(i′,q′

C|i )
〉 = 0, ∀(i, qC|i ) �= (i′, q′

C|i ). (B20)

Returning to the full system-environment-lab state in frame
E1, we now have that

ρ
(E1 )
SCE2···EN

=
∑

i

pi

∑
qC|i,q′

C|i

t (−qC|i,−q′
C|i|i, j = 1)

× |ψ̃(i,qC|i )〉〈ψ̃(i,q′
C|i )| ⊗ |qC|i〉〈q′

C|i|C ⊗
N⊗

j=2

×
∑

qE j ,q
′
E j

t (qEj − qC|i, q′
Ej

− q′
C|i|i, j)|qEj 〉〈q′

Ej
|
Ej

.

(B21)

For the SBS structure, the system cannot have extra coher-
ences beyond the {|ψ̃(i,qC|i )〉}i,qC

basis we have established, and
the conditional environment states must be distinguishable.

Hence, t (−qC|i,−q′
C|i|i, j)

!= 0 if qC|i �= q′
C|i, i.e., the environ-

ment E1 is incoherent in the x basis. This means that all the
environments must be incoherent in the x basis in order for
this to hold in all environment frames,

ρ
(E1 )
SCE2···EN

=
∑

i

∑
qC|i∈CE1 |i

pit (−qC|i|i, j = 1)

× |ψ̃(i,qC|i )〉〈ψ̃(i,qC|i )| ⊗ |qC|i〉〈qC|i|C

⊗
N⊗

j=2

∑
qE j

t
(
qEj − qC|i|i, j

)|qEj 〉〈qEj |Ej
, (B22)

where we have written t (q, q|i, j) = t (q|i, j). Note that qC =
q(E1 )

C|i is dependent on i and dependent on the original en-
vironment E1 states: this is encoded in the coefficients
t (−qC|i|i, j = 1), as well as the sets CE1|i for extra clarity.

Last, we impose the distinguishability conditions on the
environment states:

ρ
(E1 )
Ej |(i,qC )ρ

(E1 )
Ej |(i′,q′

C ) = 0, ∀(i, qC ) �= (i′, q′
C ). (B23)

Note that this implies any specific qC value is assigned only
to one unique index i, since we must have |qC|i〉 being distin-
guishable for each nonzero combination of (i, qC|i ). In other
words, knowing qC automatically gives knowledge of i, like
a many-to-one function. (Equally, the sets {CE1|i}i are disjoint
across i.)

APPENDIX C: DETAILED DISCUSSION OF NUMERICAL
RESULTS OF DYNAMIC SYSTEM AND TWO

ENVIRONMENTS

In this Appendix we provide a detailed discussion of
numerical experiments of Sec. VI. Subsection C 1 consid-
ers when the measurement-limit Hamiltonian is the only
interaction present. Subsection C 2 considers additional
self-evolution in the environment. Subsection C 3 con-
siders environment-environment interactions (without self-
evolution). Finally, Subsec. C 4 considers the effect of adding
a more general global interaction.

1. Measurement limit Hamiltonian

We first consider the case when only the central interaction
is present, as described in the main text. We investigate how
the system-to-environment information transfer varies given
different initial states (Cases 1.1 to 1.5), and we see how the
SBS form is preserved when we transform from the reference
frame of the external observer, C, to the reference frame of the
first environment, E1.

Note that this interaction Hamiltonian acts only till time
t = 1, and there is no further evolution afterwards.

When there is only the central interaction, we find that
in frame C, all probabilities remain unchanged, and there is
strong independence at all times, except for Case 1.3 (where
the initial environment states are entangled).

Case 1.1—Information broadcasting with pure environments

We start with a scenario when the initial state is given by
Eq. (72), i.e., when both environments are pure in state |0〉,
and thus has the largest capacity to obtain information about
the central system S. In both reference frames C and E1, the
states are fully SBS—though note that in the frame of E1,
this SBS is degenerated and thus trivial, since it has only one
nonzero probability, p(E1 )

0 = 1 at time t = 0.
External laboratory perspective: The numerical calcula-

tions showed that in frame C, all conditional environments
states, E1 and E2, are initially indistinguishable. As the system
interacts with the environments, the fidelity of all conditional
states of environments decreases monotonically to 0 at the
time t = 1, meaning that the conditional states are now distin-
guishable. Since both environments are symmetric, the fidelity
is identical for both of them.

First environment’s perspective: Figure 6 shows how all
probabilities different from p0 converge monotonically to 0
until time t = 1, corresponding to a trivial objectivity.

062420-18



BLURRED QUANTUM DARWINISM ACROSS QUANTUM … PHYSICAL REVIEW A 102, 062420 (2020)

The plot of conditional environment-environment mutual
information I (E1 )

mean is shown in Fig. 8, where a high value of
I (E1 )
mean denotes lack of strong independence. In frame E1, the

subsystems C(E1 ) and E (E1 )
2 initially gain correlations amongst

themselves up to time t = 0.5, before decaying back to strong-
independent state by time t = 1.

The fidelity of individual conditional states of C remains
large, but less than 1. Despite this, the upper bound (23) to
the distinguishability error is small, and is zero at the time
moment t = 1. The fidelity of individual conditional states
of E2 remains small but greater than 0. Comparing the upper
bounds (23) over both subsystems C and E2 we see that the
bound is slightly smaller for the latter.

Case 1.2—Information broadcasting with slightly blurred
environments

The second case we consider deals with environmental
states that are not pure, but has a small admixture of positions
other than the dominant one, given in Eq. (73).

External laboratory perspective: In this case the final fi-
delity B(C)

E1
is nonzero between the states close to each other,

and near to zero for the others. For example, at the time
t = 0.999 when the information propagation process is almost
done B(C)

E1
(0, 1) ≈ 0.566 whereas for B(C)

E1
(0, 2) ≈ 0.101 and

B(C)
E1

(0, 3) ≈ 0.001.
First environment’s perspective: The probability distribu-

tion tends towards distribution corresponding to the initial
distribution of the environment, i.e., p0 = 0.8, p1 = pD−1 =
0.1; cf. Eq. (73). The exact shape of the function is shown in
Fig. 6.

Again, mutual information is slightly higher for the central
system’s state 0. The value of Imean is again the largest at the
time t = 0.5 and converges to 0 at the time moment t = 1 for
all Cases 1. The plot of I (E1 )

mean is shown in Fig. 8.
The fidelity of conditional states of both C and E2 remain

nonzero all the time, but fidelity in the case of E2 is smaller.
At the time moment t = 1, fidelity of states 0, 1 and D − 1 is
equal to 1. The average fidelity for C is at the time 0.999 equal
to 0.786, and for E2 is equal to 0.122. Note that for the time
moment t = 1 the probabilities different than 0, 1 and D − 1
are equal to 0, and thus ρ

(E1 )
C|i and ρ

(E1 )
E2|i for other values of i are

undefined.

Case 1.3—Information broadcasting with maximally entangled
environments

Case 1.3 investigates the initial joint state with maximally
entangled environments, given in Eq. (76).

External laboratory perspective: Here the mutual informa-
tion is constant in time, and equal to 7.170, such as it results
from the maximally entangled state in the dimension under
consideration, D = 12. The fidelity of conditional states is
also constant in time and equal to 1 between all states. This
shows that there is no information transfer in this scenario.

First environment’s perspective: All probabilities p(E1 )
i are

identical, equal to 1
D ≈ 0.083 and constant over time. The

fidelity all the time equal to 1 between all conditional states.
The mutual information is identical for all central system’s

states. At the time moments t = 0, 1, the mutual information

is equal to 0, while the maximum of 1.423 is attained at the
time moment t = 0.5. We note that I (E1 )

mean behaves similarly
like in Case 1.1 but has different values. The plot of I (E1 )

mean is
shown in Fig. 8.

Case 1.4—Information broadcasting with first environment
maximally mixed

In this case the first environment E1 is initially maximally
mixed, and the second one pure. One may expect that there is
no information transfer to E1.

External laboratory perspective: As expected, conditional
states on E1, {ρ (C)

E1|i} are completely indistinguishable. On the
other hand, the conditional states on E2 are fully distinguish-
able at the time moment t = 1.

First environment’s perspective: From the point of view
of E1, all probabilities p(E1 )

i are identical and constant over
time. This supports the conclusion that from this perspective
no knowledge regarding the central system S is obtained. The
mutual information is identical for all states of the central
system; it is initially quite large (3.585 at the time t = 0), but
monotonically decreasing to 0 at the time moment t = 1. The
plot of I (E1 )

mean is shown in Fig. 8.
The conditional states of C are completely indistinguish-

able. The conditional states of E2 are initially indistinguish-
able, but monotonically tends to the full distinguishability.

Case 1.5—Information broadcasting with second environment
maximally mixed

This case is similar to the previous one, where one of the
environments is initially maximally mixed, but this time, the
second environment, E2 is initially maximally mixed, as given
in Eq. (75b).

External laboratory perspective: As implicated by the sym-
metry of the scenario, fidelity is identical in values as in Case
1.4 from C’s reference frame, with swapped environments.

First environment’s perspective: In this case all probabili-
ties {p(E1 )

i } are initially identical, and tend to 1 for p0 and 0 for
the others at the time moment t = 1. Furthermore, the values
of probabilities are the same as in Case 1.1 (from E1’s point
of view). This means that the different state of the second
environment E2 did not influence the perceptions of E1.

The mutual information is 0 all the time for all central
system’s states. The fidelity of all conditional states remain
quite high for both C and E2 (0.640 and 1, respectively),
nonetheless the error probability upper bound decreases to 0
for both C and E2. This is caused not by the distinguishability
of conditional states but by the degeneracy of the SBS when
only one probability is nonzero.

2. Self-evolution of environments

In the previous subsection, we dealt with the situation
when the only time evolution was caused by the interaction
of the environments with the central system. In the second
group of cases we add a self-evolution Hamiltonian to each
environment. As described in the main text, the self-evolution
Hamiltonians allows for jumps between neighboring states in
Case 2.1, and for random jumps with random rates in Case 2.2.
For both cases the initial joint state ρmpp is given in Eq. (72).
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Case 2.1—Self-evolution of environments

External laboratory perspective: From symmetry it follows
both environments E1 and E2 are identical. The value of mean
mutual information, I (C)

mean = 0 for all moments of time. The
fidelities decreases monotonically from the value 1 at the time
moment t = 0 to the value 0 at the time t = 1. Afterwards the
fidelities remain constantly 0. The last observation is a direct
consequence of the fact that the fidelity is invariant under uni-
tary rotations, such like the self-rotations of the environments.

First environment’s perspective: Initially in the E1 refer-
ence frame, all probabilities {p(E1 )

i } are identical and equal to
1
D , and tend to 1 for p(E1 )

0 at the time moment t = 1. However,
for the times of order of 10, the probabilities adjacent to p(E1 )

0

(i.e., {p(E1 )
1 } and {p(E1 )

D−1}) begin to be non-negligible. At the
times of order 100, each probability becomes significant, and
p(E1 )

0 drops to the value 0.05 (and will revive). We can see this
in Fig. 7. With long-term averaging all probabilities are the
same.

The conditional mutual information,

H2
(
ρ

(C)
E1|i
)+ H2

(
ρ

(C)
E2|i
)− H2

(
ρ

(C)
E1E2|i

)
, (C1)

is the largest for the state i = 0 of the central system. The
mean mutual information I (E1 )

mean is zero at the beginning and
at the time t = 1, while its maximum of 1.690 occurs at time
t = 0.5. After the time moment t � 1, the error upper bound
is constantly equal to 0. The difference between I (E1 )

mean in this
case and in Case 1.1 does not exceed 0.0016 (cf. Fig. 8).

The fidelities of C are initially equal to 1. The upper bound
of the guessing probability in Eq. (23) drops to a small value
of 0.04 at the time moments close to 1, but for large times it is
high and becomes trivial at the time t ≈ 20. On the other hand,
for E2 fidelities are also initially equal to 1, but afterwards they
fall quite quickly to the value of 0 at the time moments close to
1 and remain equal to 0 for all time moments after 1. We note
that before time moment 30 most of the probabilities {p(E1 )

i }
are close to 0 and their fidelity does not influence the upper
bound, but after this moment their fidelities are well defined
and equal to 0.

Case 2.2—Random self-evolution of environments

Since in this case the jumps are not distance-dependent, it
is expected that locality-related phenomena do not occur in
this case, in contrast to the previous Case 2.1.

External laboratory perspective: In the C’s perspective, the
mutual information is always equal to 0. The fidelities of both
E1 and E2 are very similar (up to random fluctuations), and
are at a similar level as Case 2.1 (from perspective C), but
does not converge to 0 at the time t = 1, but instead to low
values between 0.001 and 0.004 (depending on the choice of
the pair of conditional states). For the same reason as in the
previous case, they are constant after the time t � 1.

First environment’s perspective: From the point of view of
E1 all the probabilities initially identical. p(E1 )

0 tend to 1 for
the time t = 1. Comparing to Case 2.1 (from E1 perspective),
other probabilities becomes non-negligible faster, already at
the time of order 5; see Fig. 7. Another difference is that, as
expected, all of these probabilities behave similarly, unlike the
local spread to neighbours in Case 2.1.
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FIG. 12. The values of mean mutual information between envi-
ronments I (C)

mean as a function of time for cases from groups 3 and 4
(cf. Table IV).

The mean mutual information starts with the value 0, with
a local maximum 1.693 at the time t = 0.5, and drops back
down to 0 at the time moment t = 1. Afterwards it increases
and reaches saturation level of about 2.5 at the time t ≈ 150;
see Fig. 9.

Subsystem C’s fidelities remains very high all the time,
although for the time moments close to 1 the upper bound
on the probability of error in Eq. (23) is low (0.109) but it
increases quickly (and becomes trivial for the time t = 8). For
subsystem E2, the fidelities and error probability upper bound
drops to 0 for the time close to 1 and begin to increase from
time t = 10, to become trivial at the time of order 30.

3. Mutual information transfer between environments

This group of cases investigates interactions between en-
vironments (without self-evolution). Case 3.1 has distance
dependent interactions (as described in the main text), and
Case 3.2 has random rates of jumps. The initial states are
such that both E1 and E2 located at the same position, given in
Eq. (72).

Case 3.1—Simple mutual information transfer. External
laboratory perspective: In Fig. 12 we see that the mutual
information is initially 0 and gradually increases to significant
values (above 1) for the time of order 20, then fluctuates,
sometimes reaching even the value 3.8.

As expected from the symmetry, the fidelities are identical
between the two environments, and are the greater the closer
the states are. The upper bound in Eq. (23) decreases to a value
close to 0 (0.05 at minimum) at the time moments close to 1,
afterwards it increases quickly and becomes trivial at the time
close to 20 and above.

First environment’s perspective: Here all probabilities ini-
tially identical, for the moment 1 p(E1 )

0 = 1. Afterwards at
the time of order 2 the share of p(E1 )

1 and p(E1 )
D−1 (the locally

neighboring states) gradually increases. At the time of the
order 40 some share of p(E1 )

2 and p(E1 )
D−2 (more distant, but still

close states) becomes important. The remaining probabilities
even for long times (of order 1 000 000) stay close to 0.
Detailed plots of these probabilities is shown in Fig. 7 and
Fig. 13.
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FIG. 13. Probabilities {p(E1 )
i }i=0,1,2,10,11 for Case 3.1. p(E1 )

0 is
dominating at the time t = 1, afterwards the probabilities neigh-
boring at the 12-dimensional ring, i.e., p(E1 )

1 and p(E1 )
11 , start to be

non-negligible. After some time more distant probabilities, p(E1 )
2 and

p(E1 )
10 , also start increasing.

Mean mutual information starts with the value 0, reaches
its maximum of 1.689 at the time t = 0.5, drops again to 0 for
the time t ≈ 1 and afterwards remains 0. The I (E1 )

mean in this case
and in Case 1.1 are very similar, and never differ more than
0.0009 (cf. Fig. 8).

The upper bound on the probability of error (23) drops to
a value close to 0 for the time of order 1 (0.051 and 0.011
for C and E2, respectively). For the subsystem C it increases
quickly, and becomes trivial at the time of order 20. For the
subsystem E2 remains low even for large times (average 0.016
for a time interval of up to 1 000 000).

Case 3.2—Mutual information transfer with random
Hamiltonian. External laboratory perspective: Mean mutual
information is initially 0 and gradually increases to significant
values for the time of order 10, then reaches saturation and
maintains a high constant level of about 5.7 starting from
time about 50 (and does not drop even for the time of order
1 000 000) (see Fig. 12).

The error probability upper bound is very high, and thus
upper bound is only useful for times close to 1 (when it is
equal to 0.383), and the bound becomes trivial after time t =
3.

First environment’s perspective: At time t = 0, all prob-
abilities p(E1 )

i are equal. The probability p(E1 )
0 dominates for

times close to 1, then all other probabilities increase to a
similar degree. After time of order 50, all probabilities become
very similar (see Fig. 7).

The mean mutual information is initially 0, the maximum
of 1.695 is attained at the time t = 0.5, returns close to 0 for
at times close to 1, gradually increases to saturation level of
2.8 from time of order 50 and does not drop (see Fig. 9).

For C’s conditional states the upper bound for error proba-
bility (23) is very high all the time (giving a nontrivial bound
only for the time between 0.9 and 3), and minimal (equal to

0.429) at the time t = 1. For E2’s conditional states the bound
is also low (0.136) only near the moment 1 and becomes trivial
after time t = 9. The fidelity states of both subsystems is high
all the time.

4. Slightly disturbed global evolution

Now, we analyze a case where both self-evolution and
environmental interactions are present, with the Hamiltonians
are described in the main text [discussion following Eq. (71)],
in conjunction with distortion from a random Hamiltonian
over the tripartite state of C, E1, and E2. This is the only
case where the probabilities {p(C)

i }D−1
i=0 evolve in time and the

decoherence factors,

�(C) :=
D−1∑

i �= j=0

∣∣〈i|STrE1E2

(
ρ

(C)
SE1E2

)| j〉S

∣∣, (C2a)

�(E1 ) :=
D−1∑

i �= j=0

∣∣〈i|STrCE2

(
ρ

(E1 )
SCE2

)| j〉S

∣∣, (C2b)

have to be taken into account.

Case 4—Global evolution with simple self-evolution and mutual
information transfer

External laboratory perspective: The fluctuations from the
uniform probability distribution of {p(C)

i }D−1
i=0 are only visible

from time t = 50, but nevertheless the standard deviation
of the probabilities at any given time (at least till time t =
1 000 000) does not exceed 0.002.

The mean mutual information between the conditional en-
vironments increases from 0, by the value 0.012 for time
t = 1, to the value of saturation equal to about 3.5, and after
time t = 50 it fluctuates around this value; see Fig. 12. Hence,
the environments do not have strong independence.

The upper bound in Eq. (23) is large for both E1 and E2, the
bound is reasonable only close to time t = 1, and becomes
trivial before time t = 20. Fidelities remains low till time
around t = 10. The long-time average of �(E1 ) is 0.245, its
value at the time t = 1 is 0.003.

First environment’s perspective: In Fig. 7 the distribution of
{p(E1 )

i }D−1
i=0 is initially uniform, and by time t = 1 it becomes

dominated by p(E1 )
0 ≈ 0.999. The adjacent probabilities p(E1 )

1

and p(E1 )
D−1 begin to increase and become significant for the time

t ≈ 4. From time t ≈ 300 the distribution is again uniform
with almost no fluctuation (the standard deviation is 0.002).

The mean mutual information starts from the value 0, the
local maximum of 1.692 is attained for the time t = 0.5,
then it decreases to 0.001 at the time t = 1, and afterwards it
reaches saturation about 3.5 for the time t ≈ 300 and remains
at this level. The plot of I (E1 )

mean is shown in Fig. 9. Hence, in the
long-time regime, there is no strong independence.

The error probability upper bound is low only around time
t = 1 (0.142 for C and 0.048 for E2), and the fidelities are high
for both environments, meaning that the conditional states are
not very distinguishable. The long-time average of �(E1 ) is
0.235, its value at the time moment 1 is 0.015.
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