115 research outputs found

    Routine blood monitoring in maintenance immunoglobulin treatment of inflammatory neuropathy: Is it clinically relevant?

    Get PDF
    Background: Pre-treatment screening for IgA deficiency and close monitoring of full blood count(FBC) and renal function is recommended with intravenous immunoglobulin(IVIg) therapy in neurological diseases. / Aims: To examine the frequency of biochemically defined and clinically significant episodes of treatment associated haemolysis, neutropenia, thrombocytopenia and acute kidney injury(AKI) in a cohort of patients on maintenance Immunoglobulin(Ig) therapy for inflammatory neuropathy. / Methods: A retrospective review of routine blood monitoring in patients from two UK specialist peripheral nerve centres. Accepted definitions for clinically and biochemically significant haemolysis, neutropenia, thrombocytopenia and AKI were used. / Results: 1919 infusion episodes in 90 patients were analysed. Age(mean(S.D)) = 58.09(14.4)years, 63% male, 72% CIDP(28% MMN), 97% IVIg(3% SCIg). Dose = 1.57(0.79)g/kg/month or 97.1(37.3)g/infusion, frequency:3.9(1.4) weeks. Relative IgA deficiency was noted in 2 individuals (prevalence:2.2%, 95%C.I.:0–5.2) who received a combined total of 38 infusions(3800 g IVIg) without adverse event. No clinically significant episodes of haemolysis, neutropenia, thrombocytopenia or AKI occurred in relation to treatment. An asymptomatic drop>10 g/L haemoglobin(Hb) occurred in 3.5%(95%CI:2.7–4.3) of treatment episodes in 38 individuals, mean reduction:17.7(7.4)g/L; lowest Hb:86 g/L. Lower pre-treatment haemoglobin correlated with risk of recurrent Ig-related drop(p:0.007). Two patients with chronic renal failure(stage 1 and 3) received 28(IV) and 104(SC) infusions respectively(6416 g) without impact on estimated glomerular filtration rate(eGFR). / Conclusions: No clinically significant Ig-related episodes of haemolysis or AKI were identified in this representative cohort. This suggests that routine monitoring is not essential in long-term Ig use but should be considered when clinically indicated

    The Phenotypic Radiation Resistance of CD44+/CD24−or low Breast Cancer Cells Is Mediated through the Enhanced Activation of ATM Signaling

    Get PDF
    Cancer initiating cells (CIC) are stem-like cells. CIC may contribute not only to the initiation of cancer but also to cancer recurrence because of the resistance of CIC both to chemotherapy and radiation therapy. From the MCF-7 and MDA-MB231 breast cancer cell lines and primary culture of patient breast cancer cells, we isolated by flow cytometry a CIC subset of cells with the CD44+/CD24−or low phenotype. The CD44+/CD24−or low subset showed increased sphere formation and resistance to radiation compared to the non- CD44+/CD24−or low subset. The increased radiation resistance was not dependent on the result of altered non-homologous end joining (NHEJ) DNA repair activity as both NHEJ activity and expression of the various proteins involved in NHEJ were not significantly different between the CD44+/CD24−or low and non- CD44+/CD24−or low subsets. However, activation of ATM signaling was significantly increased in CD44+/CD24−or low cells compared to non- CD44+/CD24−or low cells in both from breast cancer cell lines and primary human breast cancer cells. Application of an ATM inhibitor effectively decreased the radiation resistance of CD44+/CD24−or low subset, suggesting that targeting ATM signaling may provide a new tool to eradicate stem-like CIC and abolish the radiation resistance of breast cancer

    Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome

    Get PDF
    Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in this cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65–1.88 per 100 000 individuals per year. GBS incidence fell between March and May 2020 compared to the same months of 2016–19. GBS and COVID-19 incidences during the pandemic also varied between regions and did not correlate with one another (r = 0.06, 95% confidence interval: −0.56 to 0.63, P = 0.86). In the independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) attributed to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link, this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses

    The Foundations of Agency - and Ethics?

    Get PDF
    In this article, I take off from some central issues in Paul Katsafanas' recent book Agency and the Foundations of Ethics. I argue that Katsafanas' alleged aims of action fail to do the work he requires them to do. First, his approach to activity or control is deeply problematic in the light of counterexamples, but as the related issues are substantially under-theorized, we do not at present know what agential activity or control may imply. More importantly, the view of activity or control he needs to get his argument going is most likely false, as it requires our values to do work that they are too fickle to do. Second, I take issue with the Nietzschean drive psychology underlying the second agential aim, viz. power. I argue that ordinary desires better describe a number of phenomena that Katsafanas uses drives to explain, and that some actions can aim in the opposite direction. As only drive-motivated actions aim at power, action does not, therefore, constitutively aim at power. Finally, I sketch a Humean approach to constitutivism, and argue that it both explains the desiderata that Katsafanas posits as well as solves the problems for his view. Constitutivists should prefer it to his view and develop it further

    Paracellular Absorption: A Bat Breaks the Mammal Paradigm

    Get PDF
    Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen

    Paracellular absorption is relatively low in the herbivorous Egyptian spiny-tailed lizard, Uromastyx aegyptia

    Get PDF
    Extent: 9 p.Absorption of small water-soluble nutrients in vertebrate intestines occurs both by specific, mediated transport and by nonspecific, passive, paracellular transport. Although it is apparent that paracellular absorption represents a significant route for nutrient absorption in many birds and mammals, especially small, flying species, its importance in ectothermic vertebrates has not previously been explored. Therefore, we measured fractional absorption (e) and absorption rate of three paracellular probes (arabinose, L-rhamnose, cellobiose) and of 3-O-methyl D-glucose (absorbed by both mediated and paracellular pathways) by the large herbivorous lizard, Uromastyx aegyptia, to explore the relative importance of paracellular and mediated transport in an ectothermic, terrestrial vertebrate. Fractional absorption of 3-O-methyl D-glucose was high (e = 0.7360.04) and similar to other vertebrates; e of the paracellular probes was relatively low (arabinose e = 0.3160.03, Lrhamnose e = 0.1960.02, and cellobiose e = 0.1460.02), and decreased with molecular mass, a pattern consistent with other vertebrates. Paracellular absorption accounted for approximately 24% of total 3-O-methyl D-glucose uptake, indicating low reliance on this pathway for these herbivorous lizards, a pattern similar to that found in other terrestrial vertebrates, and different from small flying endotherms (both birds and bats).Todd J. McWhorter, Berry Pinshow, William H. Karasov and Christopher R. Trac

    Biofluid Biomarkers in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore