337 research outputs found

    Malaria transmission in the vicinity of impounded water: evidence from the Koka Reservoir, Ethiopia

    Get PDF
    Malaria / Waterborne diseases / Disease vectors / Habitats / Disease control / Entomology / Epidemiology / Surveys / Dams / Reservoirs / Villages / Case studies / Africa / Ethiopia / Koka Reservoir / Rift Valley / Awash River Basin

    Transboundary Water Law in Africa: Development, Nature, and Geography

    Get PDF

    Small reservoirs in Africa: a review and synthesis to strengthen future investment

    Get PDF
    Small reservoirs are a critical coping mechanism in water-stressed rural areas in Africa, providing immense livelihood benefits that include improved food and water security, entrepreneurial activities and climate resilience. Challenges associated with the implementation of investments in small reservoirs include appropriate site selection, weak institutions, insufficient maintenance and sedimentation. The findings from this study suggest that the benefits of small reservoirs may be tapped more efficiently by rehabilitating old sites rather than building new infrastructure. However, the findings also point to broader lessons on the need to change the way of doing business, i.e., to adopt a long-term, more holistic approach (or model) to the construction and maintenance of small reservoirs that matches the degree of the challenge associated with sustainably tapping the benefits of the water that they store

    Scientific and social response to 2006-07 activity at Ubinas volcano, southern Peru

    Get PDF
    [ESP] Ubinas es un estratovolcán en el distrito regional de Moquegua, sur de Perú (16º 22 'S, 70º 54' O; 5672 msnm). La actividad explosiva comenzó en Ubinas el 27 de marzo de 2006, luego de aproximadamente 8 meses de mayores emisiones de gases. La actividad continúa hasta nuestros días como desgasificación continua con explosiones vulcanianas intermitentes que han expulsado bloques de hasta 40 cm a distancias de 2 km del respiradero. Las columnas de cenizas se elevan a 4 km sobre el borde del cráter y se dispersan a distancias de 80 km. Las explosiones iniciales esparcieron cenizas a 7 km del volcán, y en abril llevaron al Comité Regional de Defensa Civil de Moquegua (CRDMC) a ordenar la evacuación de> 150 personas que viven en el pueblo de Querapi (~ 4 km del volcán) a Anascapa (Refugio I, ~ 8 km del volcán). Debido a aumentos sustanciales en la actividad volcánica hasta abril y mayo, un comité científico integrado (con miembros del Instituto Geológico Minero y Metalúrgico [INGEMMET], el Instituto Geofísico del Perú [IGP] y la Universidad Nacional San Agustín de Arequipa [IG-UNSA] ) recomendó que CRDMC aumente el nivel de alerta e implemente un plan de evacuación previamente establecido para cinco aldeas en un valle dentro de ~ 12 km de Ubinas. CRDMC emitió la orden de evacuación, y entre el 9 y el 11 de junio, aproximadamente 1000 personas se mudaron a un refugio en Chacchagen (Refugio II, a unos 20 km del volcán). Aunque la actividad volcánica persistió, después de ~ 8 meses en Chacchagen, más del 85% de los evacuados habían regresado a sus lugares de origen, citando las difíciles condiciones de vida y la falta de capacidad productiva como sus razones para regresar. Esta presentación detallará secuencialmente los aspectos más destacados de la actividad volcánica junto con las respuestas clave científicas y sociales

    Explosive activity at Ubinas volcano (Peru) during March 2006 to April 2007

    Get PDF
    [ESP] Ubinas es considerado el volcán más activo en el sur del Perú durante los tiempos históricos, con 24 episodios de alta actividad fumarólica desde el siglo XVI. Aproximadamente 5000 personas viven en 6 ciudades ubicadas cerca del volcán. El inicio de la actividad explosiva en marzo de 2006 fue precedido por ~ 8 meses de aumento de la actividad fumarólica. El 27 de marzo de 2006, una leve explosión causó la caída de cenizas en el pueblo de Querapi (4 km al SE del volcán). El 14 de abril, la primera explosión notable produjo una columna eruptiva gris cargada de cenizas a 800 m sobre la cima del volcán. El 19, se observó un cuerpo de lava incandescente de 60 m de diámetro en el cráter de la cumbre, y a las 10:50 del 20 de abril una explosión impulsó una columna de gas y cenizas a 3 km por encima del borde del cráter. Los productos emitidos del 14 al 23 de abril de 2006 consistieron en bloques alterados hidrotermalmente de hasta 70 cm de diámetro dentro del borde de la caldera y cenizas significativas. Desde mayo hasta julio de 2006, la actividad consistió en la desgasificación persistente con 2-3 explosiones importantes por mes. Las explosiones emitieron cenizas a alturas de 3 a 4 km y distancias de hasta 40 km. Hubo una gran explosión tanto en agosto como en septiembre, con una altura de columna ligeramente más corta y distancias de caída de cenizas. Desde noviembre de 2006 hasta mediados de marzo de 2007, Ubinas mostró una actividad decreciente caracterizada por la emisión de gases a ~ 500 m por encima del borde del cráter. La actividad aumentó desde el 29 de marzo hasta abril de 2007 con emisiones de cenizas a 2 km. La ceniza emitida a lo largo de la erupción es fina, gris y forma capas de hasta ~ 10 cm de espesor dentro de la caldera, y ~ 2 cm de espesor a una distancia de 6 km. Esta ceniza ha afectado y continúa afectando a los residentes, el ganado, los suministros de agua y el cultivo de cultivos dentro de un área ~ 100 km2 del volcán

    Understanding volcanic facies in the subsurface : a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawaii

    Get PDF
    Data availability. A digital archive of core photos and detailed core run depth log information is available at https://www.higp.hawaii.edu/hggrc/projects/humuula-groundwater-research-project/(HGGRS, 2019). The down-hole data are published with a digital object identifier via GFZ Data Services (Kück, 2019). Acknowledgements. This project was made possible by the collaborative outlook of the main partners (VBPR and DougalEARTH, GFZ, and the University of Hawai‘i) and the extensive background work undertaken by the researchers at the Hawai‘i Groundwater and Geothermal Resources Center (University of Hawai‘i) and from the HGRP project. Jehanne Paris is thanked for helping organize the logging operations and helping in the field. Martin Töpfer and Marco Groh (Operational Support Group, OSG, of ICDP, GFZ) are thanked for ensuring the smooth running of the logging operations. Dougal Jerram and Sverre Planke are also supported by the Research Council of Norway, through its Centres of Excellence funding scheme, project 223272 at CEED, University of Oslo. We would like to thank Breno Waichel and John Shervais for constructive reviews and the editorial team at Scientific Drilling for their prompt handling and meticulous guidance through the various stages from submission to publication.Peer reviewedPublisher PD

    Sustainable WEF Nexus Management : A Conceptual Framework to Integrate Models of Social, Economic, Policy, and Institutional Developments

    Get PDF
    Funding Information: This work was supported by the Decision Analytic Framework to explore the water-energy-food nexus in complex transboundary water resource systems of fast developing countries (DAFNE) project, which has received funding from the European Union's Horizon 2020 research and innovation program under grant Agreement No. 690268.Peer reviewedPublisher PD

    The devil’s in the details: data exchange in transboundary waters

    Get PDF
    Data exchange in transboundary waters is fundamental to advance cooperative water management. Nonetheless, the degree to which data are shared is not well understood. To gauge this degree, an assessment framework was developed and applied in 25 international river basins. The framework captures the degree to which a set of data parameters is exchanged among countries. A reasonable proportion of surveyed basins exchange some data, but the breadth of such exchange is often limited, and not regular. This paper highlights where data exchange can be improved and provides guidance on how indicators used in global assessment frameworks can motivate this improvement

    Management of the volcanic crisis during the most recent Ubinas eruptive activity

    Get PDF
    The most recent explosive activity of Ubinas volcano started on 27 March 2006. In response to the volcanic crisis, members of three national Institutions (INGEMMET, IGP, UNSA) as well as the regional Civil Defense offices in Moquegua (RCCDM) and Arequipa formed a joint scientific committee. With foreign help, a preliminary hazard-zone map and a contingency map were produced in early April 2006. The hazard-zone map is based on two eruption scenarios: 1) a small eruption similar to the 1990-1998 vulcanian episode of Sabancaya, and 2) a moderate event such as the AD 1677 scoria-and-ash fall and flow-producing eruption at Ubinas. Monitoring, consisting of a network of seismometers, EDM, and geochemical survey of thermal springs, has been undertaken by a pool of Institutions on a temporary basis until May 2006 and on a permanent basis ever since. The scientific committee successfully offered a threestepped response to the increase in eruptive activity: (1) The appearance of an incandescent lava plug in the vent on 20 April prompted the scientific committee to ask RCCDM to evacuate 150 people from the nearest hamlet of Querapi, situated at the foot of the unstable south flank, towards the first shelter (village of Anascapa) 8 km away. (2) Due to a substantial increase in eruptive activity between 27 April and 2 June, the scientific committee increased the level of alert from yellow to orange and implemented the evacuation plan based on the contingency map. RCCDM further issued the order to evacuate five villages within 12 km of Ubinas and, between 9-11 June 2007, 1000 people were relocated to the second shelter (Chacchagen) 20 km away from the volcano. (3) After ~9 months in Chacchagen, the refugees returned to their villages in March 2007, as the population could not cope with less economic resources and a tense situation. In addition, the planned relocation on the remote coast near Moquegua has not been implemented in 2007. Despite economic and social drawbacks, the challenging crisis of the most active volcano in Peru was the first opportunity for Peruvian institutions to successfully cooperate in, and gain lessons for, managing volcanic crises
    corecore