133 research outputs found

    Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species.

    Get PDF
    Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 μg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 μM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery

    Salvia officinalis for Hot Flushes: Towards Determination of Mechanism of Activity and Active Principles

    Get PDF
    Herbal medicinal products are commonly used in alternative treatment of menopausal hot flushes. In a recent clinical study, Salvia officinalis tincture was found to reduce hot flush frequency and intensity. The aim of the current study was the investigation of the mechanism(s) responsible for the anti-hot flush activity of S. officinalis and determination of its active principle(s). The 66 % ethanolic tincture, as well as the n-hexane, CHCl3, and aqueous ethanolic subextracts obtained from the tincture were studied in vitro for two of the most relevant activities, estrogenicity and selective serotonin reuptake inhibition. Because of an increased risk of menopausal women to suffer from Alzheimerʼs disease, an in vitro acetylcholinesterase inhibition assay was also employed. No activity was observed in the selective serotonin reuptake inhibition or the acetylcholinesterase inhibition assays at the highest test concentrations. The tincture showed no estrogenic effects whereas the aqueous ethanolic subextract exhibited estrogenicity in the ERLUX assay with an EC50 value of 64 µg/mL. Estrogenic activity-guided fractionation of the aqueous ethanolic subextract by a combination of reverse-phase vacuum liquid chromatography and gel chromatography identified luteolin-7-O-glucuronide (EC50 129 µg/mL) as the active component of the vacuum liquid chromatography fraction 4 (EC50 69 µg/mL). Luteolin-7-O-glucoside was identified as the putative estrogenic principle of the most potent minor fraction (7.6.7.6, EC50 0.7 µg/mL) obtained from the initial vacuum liquid chromatography fraction 7 (EC50 3 µg/mL). This study suggests the involvement of common and ubiquitous estrogenic flavonoids in the anti-hot flush effect of Salvia officinalis, a safe and commonly used herbal medicinal product during the menopause

    Integration of Wnt-inhibitory activity and structural novelty scoring results to uncover novel bioactive natural products: new Bicyclo[3.3.1]non-3-ene-2,9-diones from the leaves of Hymenocardia punctata

    Get PDF
    In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 μg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8–13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa’s structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections

    Metabolite profile of Nectandra oppositifolia Nees &amp; Mart. and assessment of antitrypanosomal activity of bioactive compounds through efficiency analyses

    Get PDF
    EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 μM, similar to positive control benznidazole (18.7 μM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 μM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi

    Identification of antifungal compounds from the Root Bark of Cordia anisophylla J.S. Mill.

    Get PDF
    The dichloromethane extract of the root bark of the Panamanian plant Cordia anisophylla J.S. Mill. (Boraginaceae) presented antifungal activity against a susceptible strain of Candida albicans in a bioautography primary screening. The susceptible strain was used to detect minor active compounds that would not have been detected using a classical approach. In order to identify the antimicrobial compounds, the active extract was fractionated by semi-preparative high-performance liquid chromatography and the fractions were submitted to the antifungal bioassay. This procedure enabled a precise localization of the antifungal compounds directly in the chromatogram of the crude extract and allowed for an efficient, targeted isolation. Four compounds were isolated, one of which is a new natural product. The structures were elucidated using spectroscopic methods. Their antifungal properties were evaluated by determination of the minimum inhibitory quantity and concentration by bioautography and dilution assay against a wild type strain of C. albicans

    The structure of hemicalide from the marine sponge Hemimycale sp.

    No full text
    Hemicalide is a marine natural product isolated from the sponge H emimycale sp ., collected near the Torres Islands of Vanuatu. It is characterized by cytotoxicity in the sub-nanomolar range, with an original mode of action. This article describes the establishment of the flat structure of hemicalide, based on extensive use of 2D-NMR experiments. The molecule belongs to the polyketide class with an irregular combination of acetates and propionates and adorned with two unusual hydroxylated six-membered ring lactones. After publication of the original patent, groups in Paris and Cambridge (UK) launched synthetic programmes with the aim of elucidating the configurations of some of the 21 stereogenic centres. The second part of the article discusses these achievements and presents the best hypothesis, to date, for hemicalide

    Antioxidant and antibacterial activities and polyphenolic constituents of Helianthemum sessiliflorum Pers

    No full text
    In this study, the various extracts of aerial parts of Helianthemum sessiliflorum Pers. were examined in vitro for possible source of antioxidants and for antibacterial activity. The antioxidant activity was performed by DPPH radical scavenging method which showed that ethyl acetate extract possessed the best antioxidant potential (IC50 = 32.75 ± 2.07 μg/mL). The significant linear correlation was realised between the values of the total phenolic/flavonoid content and antioxidant activity of plant extracts. The ethyl acetate and n-butanol extracts showed moderate antibacterial activity. In addition, the phytochemical study of n-butanol extract afforded nine known phenolic compounds (1-9). This is the first report of six of them (1, 3, 5-8) in Cistaceae family. The structural identification of the isolated compounds was achieved using several spectroscopic methods

    Two new hygroline and tropane alkaloids isolated from schizanthus hookeri and S. tricolor (Solanaceae)

    No full text
    Two new hygroline and tropane alkaloids, 4-hydroxybenzenepropanoylhygroline (1) and 3α,4β-dihydroxy-6β-angeloyoxytropane (2) have been isolated from the aerial parts of Schizanthus hookeri and S. tricolor, respectively, two plants indigenous from Chile. Their structures were elucidated by spectroscopic methods and high resolution mass spectrometry. Their antiparasitic activity and cytotoxicity were measured
    corecore