19 research outputs found

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Paving the way towards future-proofing our crops

    Get PDF
    To meet the increasing global demand for food, feed, fibre and other plant-derived products, a steep increase in crop productivity is a scientifically and technically challenging imperative. The CropBooster-P project, a response to the H2020 call ‘Future proofing our plants’, is developing a roadmap for plant research to improve crops critical for the future of European agriculture by increasing crop yield, nutritional quality, value for non-food applications and sustainability. However, if we want to efficiently improve crop production in Europe and prioritize methods for crop trait improvement in the coming years, we need to take into account future socio-economic, technological and global developments, including numerous policy and socio-economic challenges and constraints. Based on a wide range of possible global trends and key uncertainties, we developed four extreme future learning scenarios that depict complementary future developments. Here, we elaborate on how the scenarios could inform and direct future plant research, and we aim to highlight the crop improvement approaches that could be the most promising or appropriate within each of these four future world scenarios. Moreover, we discuss some key plant technology options that would need to be developed further to meet the needs of multiple future learning scenarios, such as improving methods for breeding and genetic engineering. In addition, other diverse platforms of food production may offer unrealized potential, such as underutilized terrestrial and aquatic species as alternative sources of nutrition and biomass production. We demonstrate that although several methods or traits could facilitate a more efficient crop production system in some of the scenarios, others may offer great potential in all four of the future learning scenarios. Altogether, this indicates that depending on which future we are heading toward, distinct plant research fields should be given priority if we are to meet our food, feed and non-food biomass production needs in the coming decades

    Improving crop yield potential: Underlying biological processes and future prospects

    Get PDF
    The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity

    The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco

    Get PDF
    Tomato spotted wilt virus is an important threat to tomato production worldwide. A single dominant resistance gene locus, Sw5, originating from Lycopersicon peruvianum, has been identified and introgressed in cultivated tomato plants. Here we present the genomic organization of a 35250 bp fragment of a BAC clone overlapping the Sw5 locus. Two highly homologous (95%) resistance gene candidates were identified within 40 kb of the CT220 marker. The genes, tentatively named Sw5-a and Sw5-b, encode proteins of 1245 and 1246 amino acids, respectively, and are members of the coiled-coil, nucleotide-binding-ARC, leucine-rich repeat group of resistance gene candidates. Promoter and terminator regions of the genes are also highly homologous. Both genes significantly resemble the tomato nematode and aphid resistance gene Mi and, to a lesser extent, Pseudomonas syringae resistance gene Prf. Transformation of Nicotiana tabacum cv. SR1 plants revealed that the Sw5-b gene, but not the Sw5-a gene, is necessary and sufficient for conferring resistance against tomato spotted wilt virus.

    White Paper describing the route to improved crop yields in Europe

    No full text
    The realisation of the full objectives of international policies targeting global food security and climate change mitigation, including the European Green Deal, United Nation’s Sustainable Development Goals (SDGs), the Paris Climate Agreement COP21 and transition away from a fossil-carbon industrial base to one that is more bio-based, requires that we(i) sustainably increase the yield, nutritional quality, and biodiversity of major crop species,(ii) select climate-ready crops that are adapted to future weather dynamic and(iii) increase the resource use efficiency of crops to preserve natural resources, such as fresh water and phosphate and reducing the environmental burden arising from the application of nitrogenous fertiliser.Advanced scientific knowledge and tools for research and crop breeding already provide an excellent platform to build on. A long-term Strategic Research Agenda now needs to be agreed and priorities set to deliver blueprints for climate resilient future-proofed crops. This strategy should then be implemented through an innovative collaborative approach that combines the joint knowledge base of the research and industrial communities, with multi-stakeholder involvement and strong support from policy makers.This white paper has been compiled from contributions from several experts across the field of plant sciences. The CropBooster-P project has developed this strategic research agenda for a crop improvement programme that will provide the genetic innovation to improve and future proof our crop plants. It builds a strong collaboration between plant scientists and modellers, physicists, soil scientists, engineers and coders, biomathematicians, agronomists, plant breeders and farmers. The goal is to exploit the largely untapped genetic diversity that exists within the wild relatives and ancient and heirloom varieties of our crop plants to improve our crops so they will be more resilient, high yielding, resource efficient, nutritious, and ready for the future climate of Europe. The knowledge and technology to reach this goal springs from the transformative developments that have occurred in the last 20 years in genomics, phenomics, crop sciences, molecular plant sciences, agronomy, and plant breeding

    CropBooster‐P:Towards a roadmap for plant research to future‐proof crops in Europe

    No full text
    The world needs more than double its current agricultural productivity by 2050 to produce enough food and feed, as well as to provide feedstock for the bioeconomy. These future increases will not only need to be sustainable but also need to compromise the nutritional quality, and ideally also need to decrease greenhouse gas emissions and increase carbon sequestration to help mitigate the consequences of global climate change. These challenges could be tackled by developing and integrating new future‐proof crops into our food system. The H2020 CropBooster‐P project sets out plant‐centered breeding approaches guided by a broad socio‐economic and societal support. First, the potential approaches for breeding crops with sustainably increased yields adapted to the future climate of Europe are identified. These crop‐breeding options are subsequently prioritized and their adoption considered by experts across the agri‐food system and the wider public, taking into account environmental, economic and other technical criteria. In this way, a specific research agenda to future‐proof our crops was developed, supported by an eventual implementation plan
    corecore