42,219 research outputs found
Tunable graphene bandgaps from superstrate mediated interactions
A theory is presented for the strong enhancement of graphene-on-substrate
bandgaps by attractive interactions mediated through phonons in a polarizable
superstrate. It is demonstrated that gaps of up to 1eV can be formed for
experimentally achievable values of electron-phonon coupling and phonon
frequency. Gap enhancements range between 1 and 4, indicating possible benefits
to graphene electronics through greater bandgap control for digital
applications, lasers, LEDs and photovoltaics through the relatively simple
application of polarizable materials such as SiO2 and Si3N4.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Simulation of a new Pressure Swing Batch Distillation System
The operation and performance of a new pressure swing batch distillation
configuration is investigated by rigorous simulation calculations. A maximum boiling point
azeotrope is separated in a double column batch rectifier. We study the influence of the main
operational parameters and determine the optimal value of these parameters. The calculation
results are presented for the mixture water (A) – ethylene-diamine (B)
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling
Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies
Fully automatic worst-case execution time analysis for MATLAB/Simulink models
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In today's technical world (e.g., in the automotive industry), more and more purely mechanical components get replaced by electro-mechanical ones. Thus the size and complexity of embedded systems steadily increases. To cope with this development, comfortable software engineering tools are being developed that allow a more functionality-oriented development of applications. The paper demonstrates how worst-case execution time (WCET) analysis is integrated into such a high-level application design and simulation tool MATLAB/Simulink-thus providing a higher-level interface to WCET analysis. The MATLAB/Simulink extensions compute and display worst-case timing data for all blocks of a MATLAB/Simulink simulation, which gives the developer of an application valuable feedback about the correct timing of the application being developed. The solution facilitates a fully-automated WCET analysis, i.e., in contrast to existing approaches the programmer does not have to provide path information
A polarization interferometer for coherent optical image processing
Imperial Users onl
U(1) Gauge Theory with Villain Action on Spherical Lattices
We have studied the U(1) gauge field theory with Villain (periodic Gaussian)
action on spherelike lattices. The effective size of the systems studied ranges
from 6 to 16. We do not observe any 2-state signal in the distribution function
of the plaquette expectation value at the deconfining phase transition. The
observed finite-size scaling behavior is consistent with a second order phase
transition. The obtained value of the critical exponent is nu =0.366(12) and
thus neither Gaussian (nu = 0.5) nor discontinuous (nu=0.25) type, indicating a
nontrivial continuum limit.Comment: 10 pages, LaTeX, 2 figure
A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics
A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation
- …