
Fully Automatic Worst-Case Execution Time Analysis for
Matlab/Simulink Models ∗†

Raimund Kirner‡, Roland Lang§, Gerald Freiberger§, and Peter Puschner‡

{raimund,peter}@vmars.tuwien.ac.at

Abstract

In today’s technical world (e.g., in the automotive
industry), more and more purely mechanical compo-
nents get replaced by electro-mechanical ones. Thus
the size and complexity of embedded systems steadily
increases. To cope with this development, comfortable
software engineering tools are being developed that al-
low a more functionality-oriented development of appli-
cations. This paper demonstrates how worst-case exe-
cution time (WCET) analysis is integrated into such
a high-level application design and simulation tool –
Matlab/Simulink – thus providing a higher-level in-
terface to WCET analysis. The Matlab/Simulink ex-
tensions compute and display worst-case timing data
for all blocks of a Matlab/Simulink simulation, which
gives the developer of an application valuable feedback
about the correct timing of the application being devel-
oped. The solution facilitates a fully-automated WCET
analysis, i.e., in contrast to existing approaches the
programmer does not have to provide path information.

1 Introduction

As a consequence of technological advances, more
and more mechanical systems are getting replaced by
electro-mechanical ones (see, e.g., the growing number
of embedded-system components in today’s automo-
biles, aircraft and trains). To deal with the demands
of the future design and development of embedded real-
time software, functional modeling of applications and
automatic code-generation will be used instead of tradi-

∗This work has been supported by the IST research
project “Systems Engineering for Time-Triggered Architectures
(SETTA)” under contract IST-10043.

†Matlab and Simulink are registered trademarks of the
Mathworks, Inc.

‡Vienna University of Technology, Austria
§Dependable Computer Systems OEG, Vienna, Austria

tional hand coding. To deal with high safety demands,
time triggered operating systems (OS) and communi-
cation systems are used. The latter require pre-runtime
information about scheduling and communication pat-
terns, and task execution times.

Matlab/Simulink is a widely used software tool for
designing and simulating models of control applica-
tions. To build up and simulate real-time applications
it is required to know the timing behaviour of the sys-
tem. Having tight WCET values of code components
is mandatory to enable a timely correct system sim-
ulation. Various research and development work has
come up with solutions for representing entire real-
time systems with Matlab/Simulink models. Using
Matlab/Simulink has the advantage that it generates
so-called executable specifications for the analysis of
applications at a high level of abstraction and provides
automatic code generation to reduce development costs
and coding errors.

In order to evaluate the timing of Matlab/Simulink
models and to make sure that models meet their
timing requirements, we have developed an approach
for the WCET analysis of Matlab/Simulink models
[5]. This approach has been implemented in a pro-
totype WCET tool. The contribution of this method
is that it works fully automated, i.e., the user does
not have to bother with annotations for path in-
formation. Instead, the required control-flow infor-
mation is automatically derived by the code genera-
tor from the Matlab/Simulink model. As a conse-
quence, modeling and simulating an application within
Matlab/Simulink can be done “as usual”; the user
gets WCET analysis “for free”. It is the purpose of
this paper to describe this solution to the WCET anal-
ysis of Matlab/Simulink models.

Although the actual WCET analysis of programs
is typically performed on the assembly or object-code
representation of these programs, high-level program-
ming languages are the more adequate and preferred
interface of WCET analysis to the user [10]. A number
of languages have been extended with WCET anno-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1641799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tations (Euclid [8], Modula2 [13], ADA [1], C [4, 9],
etc.). An example for WCET analysis of programs at
a more abstract level than “standard” programming
languages can be found in [2] for the Statemate Stat-
echart system [3]. This paper presents our WCET
analysis approach that has been integrated into the
Matlab/Simulink environment.

The paper is structured as follows: Section 2 gives an
overview of the main components of the WCET anal-
ysis tool chain. The possible paradigms used to model
tasks are given in Section 3. Section 4 describes the
code generation from a simulation model. The concept
of the WCET analysis tool is given in Section 5. Sec-
tion 6 describes how the results from WCET analysis
are integrated into Matlab/Simulink. The multiple
insights into WCET analysis results are listed in Sec-
tion 7. Finally, Section 8 presents conclusions.

2 WCET Analysis Framework

As described in [6], the main components of the
WCET analysis framework shown in Figure 1 are:

Figure 1. Main Modules of Framework

Model Management and Simulation: contains
the modeling of tasks, providing a user interface
for WCET information and code generation. It
is responsible for obtaining all data relevant for
the simulation model from the user and maintains
this data for further processing. In addition,
this module provides model simulation to allow,
for example, designing controllers for open or
closed-loop control. The module further provides
code generation, to produce executable algorithms
of the designed and analyzed controllers. The
simulation environment used is Matlab/Simulink
with several extensions as described in this paper.

WCET Analysis: calculates the WCET of an exe-
cutable algorithm that is provided in the form

of annotated C code by the “Model Manage-
ment and Simulation” module. The “WCET
Analysis” module is self-contained and operates
autonomously. For reasons of transparency to-
wards the user, however, the user interaction with
the “WCET Analysis” module is performed via
the “Model Management and Simulation” module.
The results of the WCET analysis are propagated
back to Model Management in the form of WCET
back-annotation data. The WCET analysis pro-
cess is directly coupled with code generation.

wcetC Target
Files

Matlab/Simulink
Model

WCET Analysis
Handling

Target Language Compiler

Matlab/Simulink

Executeable

WCET Analysis
Results

one-time by Engineer: by Matlab/Simulink user:

Figure 2. Engineering Process

To integrate WCET analysis into Matlab/Simulink
we modified the tool chain of Matlab/Simulink.

The engineering process is shown in Figure 2. All
modifications of the Matlab/Simulink block-set that
are necessary to generate WCET analysable code are
done only once by the developer of the framework.
This includes the software extensions that integrate the
WCET analysis into the Matlab/Simulink tool chain.
The user of this framework can therefore model appli-
cations inside Matlab/Simulink as usual and calculate
the WCET with no extra effort.

Figure 3. Model Management and Simulation

The simulation of applications in Matlab/Simulink
is not necessarily done in real time. The WCET anal-

2

ysis itself is performed for the target hardware chosen
by the user.

The subcomponents of the “Model Manage-
ment and Simulation” module are shown in Fig-
ure 3. The subcomponents “Target Code Generation”,
“Matlab/Simulink Model” and “Back Transformation
Tool” are described in more detail in Sections 3, 4 and
6 respectively. The module “WCET Analysis” is de-
scribed in Section 5.

3 Modeling in Matlab/Simulink

One of the major issues in creating a functional
model of a time-triggered real-time system is to repre-
sent OS primitives like tasks and inter-process commu-
nication in the functional model. For the simulation
of the components of a time-triggered OS, its func-
tional model requires information about the worst-case
execution time of each task. With this information,
e.g., statements about the occurrence of preemption of
time-triggered tasks can be made at simulation time.
Figure 4 shows the principle components for modeling
tasks. For modeling of time-triggered tasks there are
in general two different possible approaches.

3.1 The Triggered-Subsystems Approach

In this approach Simulink subsystems with a trig-
ger input are used to model tasks. All Simulink blocks
that are contained in these triggered subsystems and
in subordinate subsystems are part of the task’s func-
tional model. An OS-block that is placed outside the
task blocks is used to generate signals that trigger the
task activations. These trigger signals are generated
according to a task table that describes the activation
intervals and offsets of tasks. During code generation,
each of the triggered subsystems becomes a task func-
tion in the source code. The task table of the OS is
derived from the OS-block’s configuration data.

Figure 4. Modeling Tasks in M atlab/Simulink

3.2 The Sample-Time/Offset Approach

This approach is based on Simulink’s simulation
paradigm where each block has a sample-time and an
offset where both are multiples of the base sample rate
of the entire model. During code generation, all blocks
in the model that are on the same sample-time and off-
set are placed into one task function in the source code.
The task table of the OS is derived from the so-formed
tasks.

4 Generating Code

It is in general not possible to derive WCET bounds
for task models in Simulink without knowledge of the
stages hidden behind the user interface, e.g., model
code generation and compiler stages. To assess execu-
tion times, we must also take optimization techniques
in all these stages into consideration. It is therefore
necessary that source code in a high-level program-
ming language is generated from the Simulink model.
This code generation depends on the task-modeling
paradigm used, as described above. On the other hand,
the generated source code must comply with the syntax
and semantics of the WCET-analysis compliant source
code, that is wcetC in our implementation.

The code generation for our simulation tool chain
uses the Target Language Compiler (TLC) of the
Real-Time Workshop (RTW), which is an exten-
sion to Matlab/Simulink for rapid prototyping, real-
time simulation or stand-alone simulation. The
Matlab/Simulink environment was extended to pro-
vide and manipulate custom WCET annotations for
the blocks of an application. In addition, the blocks
have been extended to store the results of the WCET
analysis. For the target code generation stage, the TLC
was adapted to generate annotated C code (written in
wcetC, see Section 5.1).

The modifications and extensions of the
Matlab/Simulink environment that are required
to integrate WCET analysis can be summarised as
follows:

• Provision of custom WCET annotations for all
blocks within the Matlab/Simulink environment.

• Design of a verification tool to verify the custom
WCET block annotations prior to the code gener-
ation stage.

• Modification of the configuration files for the TLC
to account for the block annotations and to pro-
duce correctly annotated C code.

3

• Design of an appropriate back-transformation
tool to reintegrate the WCET results into the
Matlab/Simulink model and display WCET in-
formation to the user.

4.1 Reproduction of WCET at Block Level

For model optimization by the user it may be neces-
sary to know the WCET of the source code that each
particular block and subsystem in the Simulink model
produces. If this information is needed, the source code
generator of our tool set produces block start and stop
markers that mark the source code that is produced
from each block.

In order to generate code, each block has its own
code generation functions that are called by the code
generator. In general, a Matlab/Simulink block trans-
lates into static and dynamic code. The static part ini-
tialises variables and data structures whereas the dy-
namic part represents the block’s algorithm.

Depending on the complexity of the block’s algo-
rithm, the block has one or more functions for code
generation (e.g., the Integrator block uses one code
generation function for the code that calculates the
derivatives, one code generation function that updates
its state, and one code generation function that up-
dates the output). Each of these functions must be
provided with dedicated start and stop markers to be
emitted together with the generated code. The start
marker is added at the beginning of a code generation
function, the stop marker at its end.

The start and stop markers of a block are param-
eterised with a unique identifier that allows to iden-
tify all code that has been generated from a partic-
ular block. This makes it possible to assign the cor-
rect WCET for each Matlab/Simulink block once the
WCET has been computed. This identifier is con-
structed from the name and the full path of each block
inside the model in order to guarantee uniqueness. The
assembling of the full block file path name is done au-
tomatically by the code generator.

The above described adaption of the code genera-
tion was applied on each Matlab/Simulink block. The
skeleton of an adjusted code generation function is de-
picted in Figure 5. The start and stop markers are
shown in bold style.

Optimization features of the code generator that
produce overlapping blocks or block ranges could lead
to unexpected WCET results for each block since frac-
tions of the code are shared between them. We have
chosen the approach to assign in this case to each over-
lapping block the whole execution time of its code.

%function Outputs(block, system) Output
WCET_BLOCK_START(”BlockPathName”,-1);

[...statements..]

WCET_BLOCK_STOP(”BlockPathName”);

%endfunction

Figure 5. Sample adapted Output Function

4.2 Source Code Annotation

To facilitate a high-quality WCET analysis, the code
generator annotates the generated code with path in-
formation, e.g., loop bounds, (i.e., upper bounds on the
number of iterations for each loop). Note that this path
information is derived automatically from the model
blocks. The software developer is thus completely freed
from the burden of analyzing the behaviour of the code
and coding path annotations.

4.2.1 Adding Upper Loop Bounds

When loop control code is generated, the statements
of the loop body are said to be rolled, i.e., a loop body
is said to be rolled when it is placed within loop con-
trol statements (in contrast to expanding it by dupli-
cating the code). The TLC code generator uses two
types of loop rolling mechanisms to produce loop con-
structs. They are realized either by the %for directive
or by the %roll directive. Both directives contain con-
ditional statements that define whether the loop should
be rolled or the code of the loop body should be du-
plicated instead. The %roll directive can be used in
a more flexible way than the %for directive and is the
preferred construct of the RTW. The following subsec-
tions address how these constructs are adjusted to add
the WCET path annotations in the loop header of the
produced loop.

Extension to the %for Directive

The %for directive is used by the TLC to generate code
that executes the loop body of a block multiple times.
Multiple execution can be achieved by duplicating the
code of the body or by generating loop control code
around the code.

The body is rolled (code for a loop is generated)
only when the second argument of the %for directive
evaluates to true during code generation. The third
argument of this directive is an assignment, that is
only performed when the loop is rolled. Otherwise the
left side gets assigned the null-string. This mechanism

4

is used to generate different code inside the body de-
pending on whether the loop has to be rolled or not.
The first parameter of the %for directive is an assign-
ment with the constant loop execution number. This
number is used for the loop exit test. After extending
this directive by editing the code template files of the
corresponding blocks to support WCET analysis, this
number is also used to annotate the loop bound.

Figure 6 shows an example usage of the %for di-
rective (code template for a certain block, used by the
TLC). The additional annotation for WCET analysis
is shown in bold style.

%for ident1 = exp1, exp2, ident2 = exp3
{

int i;
for (i=0; i < %<ident1>; i++)
WCET_LOOP_BOUND(%<ident1>)

{
%body

Output[i] = Input[i];
%endbody
}

}
%endfor

Figure 6. Annotated %for Directive

As a result of this extension, every loop code pro-
duced by the %for directive can be bounded to the
given maximum iteration count.

Extension to the %roll Directive

%roll is the directive that is most often used for per-
forming loop rolling. The general usage of this directive
is shown in Figure 7. %roll allows to specify whether
a statement should be rolled into a loop or not. This
can be specified in a more flexible way than by the
%for directive. roll-vector-exp is a vector of inter-
vals for the loop index. Whenever one of these intervals
is greater than the threshold given by the second ar-
gument threshold-exp, code for a loop is generated
(the execution for this interval has been rolled). Other-
wise the statements in the body are duplicated multiple
times.

%roll ident1 = roll-vector-exp,
ident2 = threshold-exp, block-exp

[...statements...]

%endroll

Figure 7. %roll Directive

In contrast to the %for directive, the definition of
the output code fragment for the %roll directive is
given by four template functions:

1. RollHeader: This function is called once on the
first usage of the vector that will actually roll.

2. LoopHeader: This function is called once for each
section that will roll prior to the body of the %roll
statement. It is used for the %roll directive to
output the loop header. The value for parameter-
ising the WCET annotation is given by its param-
eter %<Niterations>. The adapted version of this
function is shown in Figure 8. The added WCET
loop annotation is depicted in bold style.

3. LoopTrailer: This function is called once for each
section that will roll after the body of the %roll
statement.

4. RollTrailer: This function is called once at the
end of the %roll statement if any of the ranges
has caused loop rolling.

Whenever the TLC code generator determines that a
given block will roll, it performs calls to the above func-
tions to output the specific pieces of the loop control
statements.

%function LoopHeader(block, StartIdx,
Niterations, Nrolled) Output

%assign lcv = "i"

for (%<lcv> = %<StartIdx>;
%<lcv> < %<Niterations+StartIdx>;
%<lcv> ++)

WCET_LOOP_BOUND(%<Niterations>)

{

%endfunction

Figure 8. Annotated LoopHeader Function

4.3 Code Generation Example

This subsection presents a loop rolling example us-
ing the %roll directive and the Constant standard
Matlab/Simulink block. The Constant block gener-
ates a specified value independent of time. The value
is given by the Constant value block parameter. The
output can be scalar or a vector, depending on the size
of the given Constant value parameter. In the cur-
rent example the Constant value parameter is set to
[int16(1), int16(2), int16(3)]. This means that

5

the block produces a 3-dimensional integer vector sig-
nal consisting of the elements 1, 2, and 3.

The task of the Constant block is to provide the
specified parameter values as a signal on its output.
At the generated code level this means that the block
has to copy the appropriate values from its parame-
ter structure area to its output structure area while a
simulation step is performed. To copy the parameter
values from one structure to the other structure, the
Constant block uses a C for loop instruction. The re-
quired C statements of the for loop are produced using
the %roll loop rolling mechanism.

Values for loop iteration bounds are automatically
computed during the code generation. The roll re-
gions vector roll-vecotr-exp in the example Con-
stant block is [0:2] since there are exactly three pa-
rameter elements (1, 2, and 3).

WCET_BLOCK_START(”<root>/Constant”, -1);

{
int_T i;
for (i=0; i < 3; i++)
WCET_LOOP_BOUND (3)

{
y0[i] = p_Constant_Value[i];

}
}
WCET_BLOCK_STOP(”<root>/Constant”);

Figure 9. Produced Code of the Adapted Con-
stant Block

The produced code of the Constant block has the ap-
pearance as depicted in Figure 9. The produced loop
passes the values from the parameter structures refer-
enced by p_Constant_Value[i] to the outputs struc-
ture referenced by y0[i]. The produced loop is bound
by a corresponding WCET annotation. In addition the
start and stop markers denoting the block’s code are
shown.

4.4 Block Library Analysis

To be able to integrate blocks that generate library
calls that have already been analyzed into the source
code, the tool reuses the information it has already cal-
culated; the tool avoids any attempts to re-calculate
the WCET for such a call. Therefore the source code
of each block is annotated with a “preliminary WCET
value”. A value of ’−1’ forces the WCET analysis tool
to calculate the WCET for the block. A non-negative
integer value causes the block not to be evaluated. In-
stead the given value is returned as the WCET for the

block. This technique is useful for using already (by
calculation or measurement) analyzed libraries.

5 WCET Analysis Tool

The task of the “WCET Analysis” module is to de-
rive the WCET of the annotated C code and to pro-
vide a correlating assembly output that can be exe-
cuted on the target hardware. In order to derive safe
upper bounds, the WCET analysis method is based
on “Static Execution Time Analysis”. The theoretical
concepts of this approach are described in [11, 12].

The WCET analysis is performed by gathering tim-
ing information at a high representation level of the
application (simulation model) and performing WCET
analysis at assembly-language level. This allows the
generation of the timing information automatically by
the TLC of the model management module (see Sec-
tion 4 for further details) when emitting the program
code for the model.

The annotated C code acting as a high-level pro-
gramming interface is derived from ANSI C. Besides
the standard C statements it has several extensions to
express information about the control flow inside the
source file. This language is called wcetC (see Sec-
tion 5.1).

���������
	 �� ������������������������ �"!#!%$

&(')'+*+,.-/,10�24365736*�2)0 8:9<;#=�>@?)A+BDC1EGF�FIH/J.?+JLK H�F4MN?+J1?

O6PQPQR�S�T)U VXW6Y�Z)R

Figure 10. WCET Analysis Tools

The WCET analysis tools process the annotated
C code and produce a result file containing the cal-
culated WCET values and an assembly file that can be
processed by an assembler to generate a corresponding
executable. As depicted in Figure 10, the schematic
structure of the WCET analysis tools consists of two
main components:

Compiler: The compiler is derived from the GNU
GCC1. It uses a modified front-end to parse and
translate ANSI C code with WCET annotations.

Low-level WCET tool: This tool computes the
WCET bounds. The computed WCET informa-
tion is propagated back to the “Model Manage-
ment and Simulation” module.

1GCC . . . GNU Compiler Collection

6

In the following the functionality provided by the com-
piler and the low-level WCET tool are described in
more detail.

5.1 Annotated Source Language

The interface between the Simulink environment
and the WCET analysis is defined by wcetC [4], which
is derived from ANSI C. As a central feature, wcetC
has extensions to specify control flow information in-
side the source code. The following constructs [11] have
been added to the syntax of ANSI C to support static
WCET analysis:

Loop Bound: Loop bounds describe the maximum
iteration count of a loop construct.

Scope: A scope is a local environment for expressing
possible program execution paths.

Marker: Markers are used to label a certain position
of a program.

Restriction: Restrictions in the form of equations
and inequalities are placed at the end of a scope
to describe the control flow of the code inside
the scope. These equations and inequalities are
used to build the restrictions for a linear program-
ming problem [12], on which this WCET analysis
method is based. Triangular loops (as for example
in FFT2) are typical applications of restrictions.

Beside the integrated annotations for describing
(in)feasible program execution paths there are addi-
tional annotations to identify the Matlab/Simulink
blocks from which the code has been generated:

Block Info: These annotations provide a reference
from code fractions to the corresponding Simulink
blocks. This enables the identification of execu-
tion times at single block level in the simulation
model.

Build Info: This information is used for code revi-
sion tracking. It is generated by the simulation
tool and passed through the whole analysis envi-
ronment. It is not required for the WCET analysis
itself.

A comprehensive description of wcetC is given in [4].

2FFT. . . Fast Fourier Transformation

5.2 Transformation of Program Code

A program written in wcetC is parsed by the mod-
ified compiler. This compiler not only transforms the
code, but also translates the control-flow information
that is required to perform precise WCET analysis at
assembly/object level [7] during its operation. The
compiler is based on the GNU C-compiler GCC.

The grammar of the compiler has been extended to
accept the WCET annotations for the programming
language and to transform them correctly down to the
assembly code generation phase. This transformation
is also able to deal with compiler optimisations.

5.3 Analyzing the Assembly Code

Besides the object modules for rapid prototyping
the compiler generates assembly-code annotated for
WCET analysis. The WCET analysis tool is directly
called by the compiler. It processes the assembly-code
files that have been produced by the compiler. The out-
put format of the WCET analysis tool supports back-
annotation to assembly and wcetC code. It also pro-
vides a special format for Matlab/Simulink. A more
detailed description of the back-annotation formats is
given in Section 7.

Well-known techniques can be used to calculate the
WCET. We use integer linear programming (ILP) to
simplify the method required for searching the program
flow path through the structure tree of a program. The
WCET calculation is performed directly on the solu-
tion of the ILP problem [12].

The tool currently supports the C167 and MC68k
processors from Infineon and Motorola respectively.
These processors are used by our industrial project
partners. The C167 contains features like a 4stage
pipeline and a jump-cache. These features are mod-
eled in the WCET analysis tool by extending the gen-
erated ILP problem, to guarantee safe results with low
overestimation.

6 Back-Annotation

The WCET analysis tool processes the Matlab-
generated source code and produces several files with
WCET back annotations. The most important files
for this design process are the block wcet files and the
task wcet files. The block wcet files contain a list of en-
tries, where each entry consists of the block name and
the corresponding WCET value. The task wcet files
contain overall WCET values for their task functions.

7

6.1 Concept of the Back Annotation Process

In order to visualize the computed WCET in-
formation, the WCET information located in the
block wcet files and task wcet files is mapped back to
the Matlab/Simulink model. This is done by a so-
called S-Function in Simulink. The S-Function reads
the information from the WCET result files and anno-
tates the model by resolving the block-name-to-WCET
relationship. A recursive process calculates the WCET
of each subsystem by adding the WCET values of
its subordinate blocks and subsystems. The resulting
WCET values are then displayed both for each block
and each subsystem (see Figure 11).

Figure 11. Back-annotated Subsystem

6.2 Back-Annotation of Tasks

The approach of adding up WCETs of all subor-
dinate blocks is not applicable for tasks. The code
generator generates a different wcetC-function in the
source code for each task. This function contains not
only the block code that lies between block start and
stop markers, it also contains local variable declara-
tions and initializations for the block code. Besides the
block WCETs these local variable declarations and ini-
tializations also have to be considered when calculating
a WCET bound for the whole task function. Therefore
the WCET analysis tool produces a WCET value for
the entire task function.

6.2.1 Back-Annotation for the Sample-Time/
Offset Approach

Using the “sample-time/offset task modeling ap-
proach”, the WCET values for each task function in the
Simulink model is represented using a custom Simulink
block in the main system model. This block, called
“Task WCET Info Block”, stores all the necessary

WCET information. The block interface displays a
list of all tasks with their related WCET information.
This information consists of the sum of the subordi-
nate block WCET on the one hand, and the total task
WCET on the other hand.

6.2.2 Back-Annotation for the Triggered- Sub-
systems Approach

The “triggered-subsystems task modeling approach”
allows for displaying the WCET information in the
same way as described for the “sample-time/offset ap-
proach” in Section 6.2.1. In addition, it provides the
information needed to represent the WCET value for
each task function inside the task subsystem of the
Simulink model. A custom Simulink block inside each
task subsystem is used to display task-related WCETs.
We call these blocks “WCET Info” blocks, see Fig-
ure 11.

6.3 Back-Annotation of OS Information

Based on the knowledge of the task activation times
on a time-triggered operating system and the calcu-
lated WCET bounds the framework can detect and
handle the occurrence of task overlappings.

7 Representation of WCET results

The technical process for the back-annotation of
WCET results into the Matlab/Simulink simulation
model is described in Section 6.

For a better insight into the calculated WCET re-
sults that relate to the code, the framework also allows
to view the back-annotated results at different repre-
sentation levels. An overview of the different represen-
tation levels of the WCET is given in Figure 12. It
is possible to view the WCET results for single lines
of the generated source code or each instruction of the
underlying assembly code. The format of these back-
annotations is described in the following.

7.1 WCET results in Matlab/Simulink

The natural way to view the WCET results is pre-
sented inside the window of the simulation model. The
WCET is shown for the whole model as well as for each
block of the system, subsystem, etc.

The WCET value of each block is displayed below
the name of the block, see Figure 13.

8

Figure 13. WCET results in M atlab/Simulink

wcetC Program

Machine Pode + Path Info

Processors Timing Model

Matlab/Simulink Model

WCET Analyzer

WCET

Target Language Compiler

wcetC Compiler

Figure 12. Back-Annotation of WCET Results

7.2 WCET Results inwcetC

The code generator TLC is well suited for rapid pro-
totyping. The generated C code can also be used as a
base for further optimisations or adaptations at source
code level. Therefore the WCET analysis framework
also supports back-annotation for the wcetC code.

The first line of the back-annotation contains the
WCET result for the whole function. For each original
line containing a source statement, three text columns
are added on the left side of the result file. Their mean-
ing is as follows:

1. The line number in the original source code

2. The count of the assembly statements that are
generated by the C compiler for the current source
line. Obviously this information depends on the
compiler optimisations used during compilation.

3. The resulting WCET for this source line. It is the
sum of the WCETs of the assembly statements
that have been generated from this line.

Experiments have shown that more detailed back-
annotations of the source do not help to improve the
intuitive understanding of the instruction timing.

7.3 WCET Results in Assembly Code

If it is required to explain the WCET at a rather
small granularity, it is also possible to view the back-
annotation at assembly code level.

A fragment of the assembly code generated from the
above Matlab/Simulink simulation model is shown in
Figure 14. The first lines show information about the
target hardware of the WCET analysis. In this case
it is the Siemens C167 where all the settings for mem-
ory locations and external bus timings are summarised.
The line called “Build Information:” is used to keep
track of version management. The following lines con-
tain the code which is separated into individual basic
blocks. For each instruction the execution count and
the instruction cycle time is shown for sequential and,
if appropriate, also for branching control flow.

8 Summary and Conclusion

This work describes a concept for
the integration of WCET analysis into
Matlab/Simulink. This is relevant since the usage of
Matlab/Simulink is gaining increasing importance in
the embedded computing domain.

A description about task modelling in
Matlab/Simulink has been given. For this model-
ing, two different approaches were presented – the

9

/* cpu-type: c167 (Format: none) */
/* Current Configuration: */
/* EXEC_LOCATION = EXT */
/* READ_LOCATION = EXT */
/* WRITE_LOCATION = EXT */
/* BTYP = 1 */
/* MCTC = 0 */
/* MTTC = 0 */
/* ALECTL = 1 */
/* MODEL_JUMP_CACHE = true */
/* USE_DELTA_JUMP_CACHE = false */
/* Build Information: "Implementation of integer:

compiled on: Tue Sep 25 19:04:19 2001" */
/* BLOCK[3,T_ZERO] */
_integer_step: /* NOTE_WCET_TIME(10480) */
/* BLOCK Summary: 1/X [0/0] (0 0/0 0) */
/* BLOCK[26,T_COND] */

movb rl5,#0x0 /* 40(1) [integer.c:68]OTHER */
movb rl4,[r1+#-9] /* 140(1) [integer.c:68]MOV_1 */
cmpb rl4,#0 /* 40(1) [integer.c:68]OTHER */
jmpr cc_EQ,L11 /* 40(1)/60(0) [integer.c:68]CACHEABLE */

/* BLOCK Summary: 1/0 [260/280] (0 0/0 0) */

Figure 14. WCET Results in Assembly Code

“triggered-subsystems” and the “sample-time/offset”
approach. The automatic code generation process has
been adapted to support WCET analysis. The novelty
of this approach is that it facilitates fully automatic
WCET analysis. This takes the burden from program-
mer to write control flow information manually to the
code. The required control flow information is directly
generated from the Matlab/Simulink model.

The WCET analysis is done by transforming the
program and its control flow information (which is gen-
erated automatically from within Matlab/Simulink)
to several representation levels down to the assem-
bly/object code, where the WCET calculation itself is
done. Applying a fully automatic WCET analysis in
the simulation environment avoids the potential error-
prone task of specifying the control flow information
manually for generated program code. The user models
and simulates applications within Matlab/Simulink
as usual and gets, beside the prototype implementa-
tion, the calculated WCET values for single compo-
nents and the whole applications “for free”.

References

[1] G. Bernat, A. Burns, and A. Wellings. Portable Worst-
Case Execution Time Analysis using Java Byte Code.
In Proceedings of the 6th International EUROMICRO
conference on Real-Time Systems, Stockholm, June
2000.

[2] E. Erpenbach and P. Altenbernd. Worst-Case Execu-
tion Times and Schedulability Analysis of Statecharts
Models. In Proceedings of the 11th Euromicro Confer-
ence on Real Time Systems, York, June 1999.

[3] D. Harel and A. Naamad. The STATEMATE Seman-
tics of Statecharts. ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(4), Octo-
ber 1996.

[4] R. Kirner. The programming language wcetc. Re-
search Report 2/2002, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-
1, 1040 Vienna, Austria, 2002.

[5] R. Kirner, R. Lang, and P. Puschner. Wcet analysis
for systems modelled in matlab/simulink. In Proceed-
ings of the 22nd IEEE Real-Time Systems Symposium,
Work in Progress Session, pages 33–36. University of
York, Department of Computer Science, Report YCS
337 (2001), December 2001.

[6] R. Kirner, R. Lang, P. Puschner, and C. Temple. Inte-
grating WCET Analysis into a Matlab/Simulink Sim-
ulation Model. In Proceedings of the 16th IFAC Work-
shop on Distributed Computer Control Systems, Syd-
ney, Australia, November 2000. School of Computer
Science and Engineering, UNSW.

[7] R. Kirner and P. Puschner. Transformation of path
information for wcet analysis during compilation. In
Proceedings of the 13th Euromicro Conference on Real-
Time Systems, pages 29–36, Delft, The Netherlands,
June 2001. Technical University of Delft, IEEE.

[8] E. Klingerman and A. Stoyenko. Real-Time Euclid:
A Language for Reliable Real-Time Systems. IEEE
Transactions on Software Engineering, 12(9):941–989,
September 1986.

[9] C. Y. Park. Predicting Program Execution Times by
Analyzing Static and Dynamic Program Paths. Real-
Time Systems, 5(1):31–62, 1993.

[10] P. Puschner and A. Burns. A Review of Worst-Case
Execution-Time Analysis. Journal of Real-Time Sys-
tems, 18(2/3):115–128, May 2000.

[11] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. The Journal
of Real-Time Systems, 1:159–176, 1989.

[12] P. Puschner and A. V. Schedl. Computing Maximum
Task Execution Times – A Graph-Based Approach.
The Journal of Real-Time Systems, 13:67–91, 1997.

[13] A. Vrchoticky. Compilation Support for Fine-Grained
Execution Time Analysis. In Proceedings of the ACM
SIGPLAN Workshop on Language, Compiler and Tool
Support for Real-Time Systems, Orlando FL, June
1994.

10

