1,871 research outputs found
Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode
We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; ). We analyse photometric data to show the star pulsates at a frequency of d (Hz; min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at d, and we show that rotational modulation due to spots is in anti-phase between broadband and observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra
Instanton operators in five-dimensional gauge theories
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are creditedN.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. OPen Aceess funded by SCOAP
A New Near-IR C-2 Linelist for an Improved Chemical Analysis of Hydrogen-deficient, Carbon-rich Giants
Diatomic carbon (C2) is ubiquitous in astronomical environments, from
comets and stars to translucent clouds and the interstellar medium. In particular, the C2
bands (mainly the Ballik-Ramsay and Phillips transitions) are an important source of
opacity in the near-IR region of carbon stars such as the hydrogen deficient carbon-rich
(HdC) or R Coronae Borealis (RCB) stars. Present C2 linelists are still not accurate
enough (e.g., in wavelength positions) to model the near-IR spectra of HdC and RCB
stars, strongly limiting our ability to properly model their complex spectra and to extract
the elemental (an isotopic, when possible) abundances of key elements like C, N, O, F,
etc. Very recently, a new near-IR C2 linelist (including both Ballik-Ramsay and Phillips
systems, among others) have been generated by the ExoMol project (Yurchenko et al.
2018; see www.exomol.com). The synthetic spectrum constructed for the benchmark
HdC star HD 137613, using this new C2 linelist, provides an unprecedented match to its
high-resolution (R∼50,000) observed spectrum. The new C2 linelist is thus expected to
significantly improve the near-IR chemical analysis for HdC and RCB stars but also for
normal carbon stars (e.g., C-rich AGB and dwarf stars) and even Solar System bodies
like comets
Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud
The primordial abundances of light elements produced in the standard theory
of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to
photons, a quantity inferred from observations of the microwave background. The
predicted primordial 7Li abundance is four times that measured in the
atmospheres of Galactic halo stars. This discrepancy could be caused by
modification of surface lithium abundances during the stars' lifetimes or by
physics beyond the Standard Model that affects early nucleosynthesis. The
lithium abundance of low-metallicity gas provides an alternative constraint on
the primordial abundance and cosmic evolution of lithium that is not
susceptible to the in situ modifications that may affect stellar atmospheres.
Here we report observations of interstellar 7Li in the low-metallicity gas of
the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's
metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is
nearly equal to the BBN predictions, severely constraining the amount of
possible subsequent enrichment of the gas by stellar and cosmic-ray
nucleosynthesis. Our measurements can be reconciled with standard BBN with an
extremely fine-tuned depletion of stellar Li with metallicity. They are also
consistent with non-standard BBN.Comment: Published in Nature. Includes main text and Supplementary
Information. Replaced with final title and abstrac
The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere
Based on the construction by Hosomichi, Seong and Terashima we consider N=1
supersymmetric 5D Yang-Mills theory with matter on a five-sphere with radius r.
This theory can be thought of as a deformation of the theory in flat space with
deformation parameter r and this deformation preserves 8 supercharges. We
calculate the full perturbative partition function as a function of r/g^2,
where g is the Yang-Mills coupling, and the answer is given in terms of a
matrix model. We perform the calculation using localization techniques. We also
argue that in the large N-limit of this deformed 5D Yang-Mills theory this
matrix model provides the leading contribution to the partition function and
the rest is exponentially suppressed.Comment: 34 pages; v2: typos fixed, matches published version; v3: factor
correcte
M5-branes from gauge theories on the 5-sphere
We use the 5-sphere partition functions of supersymmetric Yang-Mills theories
to explore the (2,0) superconformal theory on S^5 x S^1. The 5d theories can be
regarded as Scherk-Schwarz reductions of the 6d theory along the circle. In a
special limit, the perturbative partition function takes the form of the
Chern-Simons partition function on S^3. With a simple non-perturbative
completion, it becomes a 6d index which captures the degeneracy of a sector of
BPS states as well as the index version of the vacuum Casimir energy. The
Casimir energy exhibits the N^3 scaling at large N. The large N index for U(N)
gauge group also completely agrees with the supergravity index on AdS_7 x S^4.Comment: 44 pages, 1 figure, v4: ref added, clarified weak/strong coupling
behaviors of large N free energy, minor improvements, version to be published
in JHE
Near-source passive sampling for monitoring viral outbreaks within a university residential setting
\ua9 2024 Cambridge University Press. All rights reserved. Wastewater based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly SARS-CoV-2. For accurate and timely assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is yet under-investigated. To address this, near-source passive samples were taken at four locations targeting student halls of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza-A and B viruses and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, where samplers remained in the sewer for 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using qPCR and Next Generation Sequencing. Furthermore, several outbreaks of influenza-A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified amongst the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities
Queering identity : becoming queer in the work of Cassils
This chapter explores the work of genderqueer artist Cassils in order to address the question of what it is to be human from a queer perspective. The challenges from queer and postmodern scholarship to the “identity politics” so central to earlier activist and academic agendas have been well documented. Yet, notwithstanding these valid critiques, identity remains a powerful organizing concept in contemporary experience. These contradictory stances on identity serve as a prompt for thinking about what queer brings to our understandings of being human now and in the near future
The temperature and chronology of heavy-element synthesis in low-mass stars
Roughly half of the heavy elements (atomic mass greater than that of iron)
are believed to be synthesized in the late evolutionary stages of stars with
masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly
iron) capture neutrons and progressively build up (through the
slow-neutron-capture process, or s-process) heavier elements that are
subsequently brought to the stellar surface by convection. Two neutron sources,
activated at distinct temperatures, have been proposed: 13C and 22Ne, each
releasing one neutron per alpha-particle (4He) captured. To explain the
measured stellar abundances, stellar evolution models invoking the 13C neutron
source (which operates at temperatures of about one hundred million kelvin) are
favoured. Isotopic ratios in primitive meteorites, however, reflecting
nucleosynthesis in the previous generations of stars that contributed material
to the Solar System, point to higher temperatures (more than three hundred
million kelvin), requiring at least a late activation of 22Ne. Here we report a
determination of the s-process temperature directly in evolved low-mass giant
stars, using zirconium and niobium abundances, independently of stellar
evolution models. The derived temperature supports 13C as the s-process neutron
source. The radioactive pair 93Zr-93Nb used to estimate the s-process
temperature also provides, together with the pair 99Tc-99Ru, chronometric
information on the time elapsed since the start of the s-process, which we
determine to be one million to three million years.Comment: 30 pages, 10 figure
Phases of planar 5-dimensional supersymmetric Chern-Simons theory
In this paper we investigate the large- behavior of 5-dimensional
super Yang-Mills with a level Chern-Simons term and an
adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must
choose an integration contour to completely define the theory. Using
localization, we reduce the path integral to a matrix model with a cubic action
and compute its free energy in various scenarios. In the limit of infinite
Yang-Mills coupling and for particular choices of the contours, we find that
the free-energy scales as for gauge groups with large values
of the Chern-Simons 't\,Hooft coupling, . If we also
set the hypermultiplet mass to zero, then this limit is a superconformal fixed
point and the behavior parallels other fixed points which have known
supergravity duals. We also demonstrate that gauge groups cannot have
this scaling for their free-energy. At finite Yang-Mills coupling we
establish the existence of a third order phase transition where the theory
crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase
transition exists for any value of , although the details differ
between small and large values of . For pure Chern-Simons
theories we present evidence for a chain of phase transitions as
is increased.
We also find the expectation values for supersymmetric circular Wilson loops
in these various scenarios and show that the Chern-Simons term leads to
different physical properties for fundamental and anti-fundamental Wilson
loops. Different choices of the integration contours also lead to different
properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio
- …