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1 Introduction

One of the more dramatic results to come out of the study of strongly coupled string theory

and M-theory was the realisation that there exist UV-complete quantum super-conformal

field theories (SCFTs) in five and six dimensions [1–5]. These theories then provide UV

completions to a variety of perturbatively non-renormalisable five-dimensional (5D) Yang-

Mills theories. In this paper we will consider the notion of ‘instanton operators’ and explore

their role in five-dimensional gauge theories. These local operators are a natural higher-

dimensional analogue of monopole (or ’t Hooft) operators in three dimensions [6–8] which

are e.g. important in including eleven-dimensional momentum transverse to M2-branes in

the ABJM model [9]. Indeed, in a flux background M2-branes expand into M5-branes

and the magnetic flux of the monopoles is mapped into instanton flux [10]. Therefore one

can expect an operator similar to a monopole operator in 3D to play as important a role

for M5-branes, that is in the relationship between the six-dimensional (2,0) SCFT and

five-dimensional Yang-Mills.

Non-abelian 5D gauge theories have a conserved current

J =
1

8π2
Tr ⋆(F ∧ F ) (1.1)

and the instantons of the theory are BPS particles, also referred to as instanton-solitons,

which carry the associated charge of J . Intuitively, instanton operators act as ‘instanton-

soliton-creating operators’, which insert a topological defect at a spacetime point. This

imposes certain (singular) boundary conditions for the behaviour of the gauge field at the

insertion point. The classical equations compatible with such a structure were first solved

by Yang in the 70’s [11], in the context of generalising the Dirac monopole solution to

a static, SO(5) symmetric particle in 6D SU(2) gauge theory. This solution, being time-

independent, is a solution of (Euclidean) 5D super-Yang-Mills and can be extended to any

gauge group. It turns out to be non-BPS.

– 1 –



J
H
E
P
0
3
(
2
0
1
5
)
0
1
9

More formally, instanton operators are defined in a manner familiar from three di-

mensions: they modify the boundary conditions for the gauge field in the path integral

of 5D theories. An immediate objection may be that naively we cannot define a theory

by a non-renormalisable lagrangian and consequently we also cannot define an operator

by a path integral prescription based on such a lagrangian. However, one may appeal to

the conjecture of [12, 13] that the maximally supersymmetric 5D Yang-Mills lagrangian is

non-perturbatively UV complete (e.g. along the lines of [14]) and does define a theory. In

such a scenario, instanton operators may play a crucial role in the UV completion, resulting

in a self-consistent picture.1 In any case, this definition extends to any five-dimensional

theory in which there is a notion of a gauge field strength and therefore we expect that

instanton operators can be extended to any formulation.

Along these lines, we will give evidence for how these local operators can be used in

the maximally supersymmetric case to insert discrete units of six-dimensional momentum.

As such they are crucial for the Lorentz symmetry enhancement to SO(1, 5) at strong

coupling. Our discussion also touches upon the interesting topic of compactifying CFTs in

the absence of a lagrangian description, and what this implies for the correlation functions.

In particular, we hope to shed some light on how a 6D CFT with no free parameters or

marginal operators can be related to an interacting 5D Yang-Mills theory.

The rest of this note is organised as follows. In section 2 we define instanton operators

and explore some of their elementary properties. In section 3 we then apply them to the

case of maximally supersymmetric 5D Yang-Mills and show how they can lead to Lorentz

symmetry enhancement. We briefly conclude in section 4.

2 Instanton operators

We will define an instanton operator in analogy with monopole operators in three dimen-

sions. In particular, we consider the Euclidean regime of the theory consisting of gauge

fields A, scalars X and fermions ψ where

〈O01(x1) . . .O0k(xk)〉 =
∫

[DXDADψ] O01(x1) . . .O0k(xk)e
−S , (2.1)

with the O0i(xi) some local five-dimensional operators. We then introduce a new local

operator In(x), which modifies the boundary conditions of the gauge field at infinity via

the condition

〈In(x)O01(x1) . . .O0k(xk)〉 =
∫

1

8π2Tr
∮
S4
x
F∧F=n

[DXDADψ] O01(x1) . . .O0k(xk)e
−S , (2.2)

where S4
x is an arbitrary four-sphere that surrounds the point x ∈ R

5. In other words,

inserting In(x) into a correlator instructs us to integrate over field configurations that

carry non-vanishing instanton number on the four-sphere surrounding the insertion point.

1For other attempts to formulate the (2, 0) theory, which have an explicit dependence upon the extra

dimension, see for example [15–20].
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First, we need to check that the fields obey the classical equations of motion near the

insertion point. In fact, the classical solution corresponding to a single SO(5)-symmetric

instanton operator for SU(2) gauge group was considered long ago in [11] by Yang, where

it appears as a static soliton in six dimensions. A stringy embedding of the SU(N) gener-

alisation was given later by Constable, Myers and Tafjord [21], in the context of D1 ⊥ D5

intersections.

To construct such a solution one introduces spherical coordinates on Euclidean R
5:

ds2 = δµνdx
µdxν

= dr2 + r2γijdθ
idθj , (2.3)

with γij the metric on the four-sphere. We wish to solve the Yang-Mills equations

DµFµν = 0 , D[µFνλ] = 0 , (2.4)

but with non-vanishing

I =
1

8π2
Tr

∮

F ∧ F , (2.5)

over any given sphere of radius r centred about the origin.

Note that since

d Tr(F ∧ F ) = 0 , (2.6)

we see that if I is evaluated on two spheres of radii r1 and r2 then

Tr

∮

S1

F ∧ F − Tr

∮

S2

F ∧ F =

∫

B12

d Tr(F ∧ F ) = 0 , (2.7)

where B12 is the ‘annulus’ region whose boundary is the two spheres of radii r1 and r2.

Thus the topological charge I is constant along the radial direction. Since the size of the

sphere grows as r4 we have that

Fµν ∼ 1

r2
. (2.8)

Let us compute the Yang-Mills equations in spherical coordinates. To this end, note that

the non-zero connection coefficients are

Γr
ij = −rγij , Γi

rj =
1

r
δij , Γk

ij = γ̂kij , (2.9)

where γ̂kij are the connection coefficients for γij . The Yang-Mills equations become

DrFij = DiVj −DjVi

D[iFjk] = 0

DiVi = 0

DrVi +
2

r
Vi +

1

r2
DjFji = 0 , (2.10)

where Vi = Fri and D
j is the gauge-covariant derivative on S4 (with indices raised by γij).
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The simplest solution to these equations is to set Ar = 0, Vi = 0 and ∂rAi = 0 so that

Fij simply satisfies the Yang-Mills equations on the four-sphere: D[iFjk] = 0 and DjFji = 0

with Fij independent of r. In fact this is exactly what we want. Note that in Cartesian

coordinates we have

Fij =
∂xµ

∂θi
∂xν

∂θj
Fµν . (2.11)

Now the change of variables between xµ and r, θi has the form:

x0 = r cos θ1

x1 = r sin θ1 cos θ2

...

x4 = r sin θ1 . . . sin θ4 . (2.12)

Thus

Fµν ∼ 1

r2
, (2.13)

as required.

Solutions to the above equations can be straightforwardly constructed starting with

the BPST instanton on R
4 and stereographically projecting to S4; see e.g. appendix B

of [21]. Solutions for generic SU(N) gauge group can then be obtained by replacing the

Pauli matrices with N ×N matrix representations of the su(2) algebra, such that [Ti, Tj ] =

2iǫijkTk. Let us point out two amusing associated facts for the case of single instantons.

First, the solutions on S4 satisfy

F ∧ F =
8ρ4

∑3
i=1 T

2
i

(1 + ρ2 + (1− ρ2) cos θ1)4
√
γ d4θ . (2.14)

Note that when ρ = 1, the coefficient collapses to 1
2 and yields an SO(5)-symmetric

expression. Second, when the matrix representation of SU(2) is irreducible
∑3

i=1 T
2
i =

(N2 − 1)1N×N and F ∧ F is gauge invariant. Upon using this one gets (for generic ρ)

I =
1

8π2
Tr

∫

F ∧ F =
N(N2 − 1)

6
, (2.15)

where
∫

d4θ
√
γ = 8π2/3. The above ratio is always an integer and scales like N3 for

large N .

Yet another equivalent definition of instanton operators comes from generalising the

approach of [7], that is by requiring that In(x) creates a charge-n instanton-soliton in 5D

Yang-Mills theory. By definition this has n units of instanton charge. Due to the Bianchi

identity for the gauge field, there is a topological conserved current

Jµ =
1

32π2
ǫµνκλρTr(FνκFλρ) . (2.16)
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The OPE of this current with In(0) is given by

Jµ(x)In(0) ∼
3n

8π2
xµ

|x|5In(0) + · · · , (2.17)

with the ellipsis denoting less singular terms. The exact coefficient can be deduced by

requiring that the charge I of the state obtained by acting on the vacuum with In at

t = −∞ is n.

One could also introduce the notion of a ‘refined’ instanton operator, where in addition

to specifying the topological instanton number on the four-sphere one should also provide

the moduli of the instanton on S4. Such operators would then not be Lorentz scalars as

they will not be rotationally invariant on the sphere. However, we have no need for these

here and simply include an integration over all instanton configurations at the insertion

point.

2.1 Supersymmetry and supersymmetric states

The supervariation of a fermion in the background of the Yang solution is

δψ =
1

2
ΓµνFµνΓ5ε =

1

2
ΓijFijΓ5ε . (2.18)

Here we are using a convention where Γ5 arises from the extra dimension of the (2, 0)

theory, which has been reduced on a circle. For the maximally supersymmetric case we

also need to impose

Γ012345ε = ε . (2.19)

We Wick rotate x0, go to spherical coordinates (2.3) and introduce the frame

er = dr ei = rẽi , (2.20)

where ẽi is a vielbein for S4 with unit radius. The condition (2.19) becomes

1

5!

1

det e
ǫm1...m5Γm1

. . .Γm5
Γ5ε =

1

4!

1

r4 det ẽ
ǫm1...m4Γm1

. . .Γm4
ΓrΓ5ε = iε . (2.21)

Note that we are still in flat Euclidean space. Going to the vielbein frame we find

Γ1234ΓrΓ5ε = iε . (2.22)

It is easy to see that upon imposing the above, along with the selfduality condition obeyed

by the background

1

2
ǫijklF

kl = ±Fij (2.23)

one can satisfy (2.18) iff

ΓrΓ5ε = ∓iε , (2.24)
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or equivalently

(

xµ

|x|2ΓµΓ5 ± i

)

ε = 0 , (2.25)

where the signs are correlated.

Note that this would have to be true for all xµ, which is impossible with a constant ε.

To see this, restrict xµ to the x1 axis. Then one concludes that ε has to be an eigenstate of

Γ1Γ5. Similarly, by restricting xµ to the x2 axis, one sees that ε has to be an eigenstate of

Γ2Γ5. Given that Γ1Γ5 and Γ2Γ5 do not commute, (2.25) has no solution; in other words,

all supersymmetries are broken.

At first this may seem counter-intuitive: the theory on R
1,4 contains solitonic BPS

states which carry instanton number and inserting an instanton operator at t = −∞
should — by definition — create such a state out of the vacuum. However, there is no

direct contradiction. We remind the reader that the 5D supersymmetry algebra is given by

{Qα, Qβ} = Pµ(Γ
µC−1)−αβ + Z5(Γ

5C−1)−αβ + ZI
µ(Γ

µΓIC−1)−αβ

+ ZI
5 (Γ

5ΓIC−1)−αβ + ZIJ
µνλ(Γ

µνλΓIJC−1)−αβ , (2.26)

where we have taken the spinors to be those of eleven dimensions (i.e. real with 32 com-

ponents) with C = Γ0 the charge conjugation matrix defined by ΓT
M = −CΓMC

−1,

M = 0, 1, 2, . . . , 10. We are using x5 as the extra dimension associated to M-theory;

see [13] for more details on notation. The Z5 central charge is in fact proportional to the

instanton number

Z5 = − 1

2g2YM

Tr

∫

F ∧ F . (2.27)

When the local instanton operator acts on the vacuum, it creates a tower of states with

different energies, all of which carry instanton charge. The instanton-solitons with charge

n can be found at the bottom of the tower by projecting out all other states

|n〉 = lim
τ→∞

e−(H−Z5)τIn(0)|0〉 . (2.28)

Once again, this is analogous to three dimensions, where monopole operators and BPS

vortices are annihilated by different combinations of supercharges [22].

2.2 Chern-Simons terms

We next look at the effect of including Chern-Simons terms. Even though these are excluded

in parity-conserving theories, such as maximally supersymmetric Yang-Mills, they can be

important in other contexts, such as N = 1 5D gauge theories.

If the action also includes a term

SCS =
k

24π2
Tr

∫
(

F ∧ F ∧A+
i

2
F ∧A ∧A ∧A− 1

10
A ∧A ∧A ∧A ∧A

)

, (2.29)
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which satisfies

δSCS =
k

8π2
Tr

∫

F ∧ F ∧ δA , (2.30)

then instanton operators are not gauge invariant. To see this, we consider a gauge trans-

formation δA = Dω where we assume that ω = 0 at infinity. In this case, for boundary

conditions corresponding to an instanton operator at position x, we find2

δSCS =
k

8π2
Tr

∫

D (F ∧ F ∧ ω)

=
k

8π2
Tr

∮

S4
∞

F ∧ Fω − k

8π2
Tr

∮

S4
x

F ∧ Fω

= − k

8π2
Tr

[

ω(x)

∮

S4
x

F ∧ F
]

. (2.31)

Assuming that the rest of the action and local operators are gauge invariant then

δ〈In(x)O01(x1) . . .O0k(xk)〉

= −
∫

1

8π2Tr
∮
S4
x
F∧F=n

[DXDADψ] O01(x1) . . .O0k(xk)δSCSe
−S

=
k

8π2
Tr

[

ω(x)

∮

S4
x

F ∧ F
]

〈In(x)O01(x1) . . .O0k(xk)〉 . (2.32)

Thus to understand the gauge transformation properties of In requires knowing

QI =
1

8π2

∮

S4
x

F ∧ F (2.33)

rather than just the instanton number n = Tr(QI). For the single instanton irreducible

case considered above in (2.14), (2.15) we have

QI =
1

6

3
∑

i=1

T 2
i , (2.34)

which is independent of the moduli and leads to a gauge-invariant instanton operator.

It would be interesting to examine whether QI plays a similar role to

QM =
1

2π

∮

S2

F , (2.35)

in the GNO analysis [24]. This could lead to instanton operators appearing in represen-

tations of the (dual) gauge group. To see some basic features of this quantity it is helpful

to introduce a basis ta of the full gauge group Lie algebra with metric κab = Tr(tatb) and

symmetric tensor

dabc = Tr(t(atb)tc) . (2.36)

2See [23] for a similar discussion of monopole operators in 3D Chern-Simons theories.
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In this case

δIn = kdabcQ
ab
I ω

cIn . (2.37)

On the one hand, if the Lie algebra has an abelian u(1) factor with generator t0 = 1N×N ,

then under a gauge transformation of the form ω = ω0t0 we see that

δIn = knω0In (2.38)

so that In carries U(1) charge kn. On the other, if the gauge group Lie algebra is su(2),

then dabc = 0 and hence In is gauge invariant, in accordance with what one would expect

from (2.34) when Ti = σi.

We can also consider cases where there is a Chern-Simons term that mixes the non-

abelian gauge field with a background U(1) field B (such as the one arising e.g. in [25]):

SU(1) CS =
k

8π2

∫

dB ∧ Tr

(

F ∧A+
i

3
A ∧A ∧A

)

=
k

8π2

∫

B ∧ Tr(F ∧ F ) . (2.39)

In this case, under a background gauge transformation δB = dλ and again with λ = 0 at

infinity,

δSU(1) CS = − k

8π2

∮

S4
x

λ(x)Tr(F ∧ F ) = −knλ(x) , (2.40)

where we have once again assumed the boundary conditions appropriate for an instanton

operator In(x). Therefore, as long as the rest of the action is gauge invariant,

δ〈In(x)O01(x1) . . .O0k(xk)〉

= −
∫

1

8π2Tr
∮
S4
x
F∧F=n

[DXDADψ] O01(x1) . . .O0k(xk)δSCSe
−S

= knλ(x)〈In(x)O01(x1) . . .O0k(xk)〉 (2.41)

and an instanton operator In has background U(1) charge kn.

If we think in terms of smooth soliton states on R
1,4 that carry instanton number, then

the effect of a Chern-Simons term (2.29) is to modify the equation of motion to

DµF
µνa = − g2k

32π2
κaddbcdε

νλρστF b
λρF

c
στ , (2.42)

where κab is the inverse to the Lie-algebra metric κab. This implies that

DiF
i0a =

g2k

32π2
κaddbcdε

ijklF b
ijF

c
kl , (2.43)

so that the instanton acts as a source for the electric field-strength. Thus the Chern-Simons

term induces an electric charge as measured by the flux through the sphere at infinity

1

g2

∫

S3
∞

F i0dSi =
1

g2

∫

DiF
i0d4x = kdbcdQ

bc
I κ

adta , (2.44)
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where QI is now evaluated as an integral over R
4. In particular, if the gauge group Lie

algebra has a u(1) generator t0 = 1N×N , then

1

g2
Tr

∫

S4
∞

F i0dSi = kn . (2.45)

3 An extra dimension and enhanced Lorentz symmetry

As an SCFT with no lagrangian description, the six-dimensional (2, 0) theory can be cap-

tured completely by its spectrum and operator product expansion coefficients. In relating

this description to N = 2 5D Yang-Mills, our first step is to explore what it means to

compactify a CFT on a circle and in turn what that implies for the correlations functions.

Suppose that we have a CFT in six dimensions, consisting of a list of local (gauge

invariant) operators Ô(x) as well as their correlation functions 〈Ô1(x1) . . . Ôn(xn)〉. These
correlation functions are subject to the usual constraints of conformal field theory; for

example, for two operators of conformal dimensions ∆1 and ∆2 we have

〈Ô1(x̂1)Ô2(x̂2)〉 =
c12

|x̂1 − x̂2|∆1+∆2
. (3.1)

Here and in what follows, we have used a hat to label all uncompactified six-dimensional

quantities.

We want to examine how these correlation functions behave once we compactify one

dimension. To this end, we let the six-dimensional coordinates x̂ be denoted by (x, y)

where x is now a five-vector and y ∈ R. To compactify we view the circle as an orbifold:

S1 = R/Γ where Γ acts as (x, y) → (x, y+2πRn), n ∈ Z. Thus we could consider operators

of the form

O(x, y) :=
∑

n∈Z

Ô(x, y + 2πRn) =
∑

m∈Z

eimy/ROm(x) . (3.2)

We do not claim that all operators in the five- and six-dimensional theories are related in

this way. This will only apply to a special class of operators such as BPS operators or ones

which satisfy linear equations of motion. For a study of such operators in the setting of

thermal CFT see [26]. It is therefore important to stress that we merely wish to consider

correlation functions involving operators of this form as an example.

In the above we introduced the Fourier modes

Om(x) =
1

2πR

∫ 2πR

0
dy e−imy/R

∑

n∈Z

Ô(x, y + 2πRn) . (3.3)

Clearly the Om correspond to momentum eigenstates of operators around the S1. From

the five-dimensional perspective these are Kaluza-Klein modes.

– 9 –
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Let us look at a generic two-point function on R
5 × S1:

〈O1(x1, y1)O2(x2, y2)〉 =
∑

n

∑

m

〈Ô1(x1, y1 + 2πRn)Ô2(x2, y2 + 2πRm)〉

=
∑

n

∑

m

c12
(

x212 + (y12 + 2πR(n−m))2
)

∆1+∆2
2

= −1

2

∑

k

c12
(

x212 + (y12 + 2πRk)2
)

∆1+∆2
2

=:
∑

ℓ

eiℓ(y12)/RΦ12ℓ(x12) , (3.4)

where x12 is shorthand for x1 − x2 and in going from the second to the third line we have

used ζ-function regularisation when performing one of the sums, ζ(0) = −1
2 .

We can also write

〈O1(x1, y1)O2(x2, y2)〉 =
∑

n

∑

m

ei(ny1+my2)/R〈On(x1)Om(x2)〉

=
∑

n

einy12/R〈On(x1)O−n(x2)〉 , (3.5)

where in the last line we have used translational invariance, which implies

〈On(x1)Om(x2)〉 = 0 if n 6= −m . (3.6)

Matching these two expressions gives

Φ12n(x12) = 〈On(x1)O−n(x2)〉

= − 1

4πR

∫ 2πR

0
dy12e

−iny12/R
∑

k

c12
(

x212 + (y12 + 2πRk)2
)

∆1+∆2
2

.

To proceed we can evaluate the sum using

1
(

x212 + (y12 + 2πRk)2
)s =

πs

Γ(s)

∫ ∞

0

dt

t1+s
e−

π
t
(x2

12+(y12+2πRk)2) , (3.7)

as well as Poisson resummation:
∑

m

e−πA(m+a)2 =
∑

m

A−1/2e−πA−1m2−2πima . (3.8)

This gives

〈On(x1)O−n(x2)〉 = − c12π
∆1+∆2

2

8π2R2Γ
(

∆1+∆2

2

)

∑

m

∫ 2πR

0

∫ ∞

0

dy12dt

t1+
∆1+∆2−1

2

e−iny12/R

× e−
π
t
x2
12−

t

4πR2m
2−iy12m/R

= − c12π
∆1+∆2

2

4πRΓ
(

∆1+∆2

2

)

∫ ∞

0

dt

t1+
∆1+∆2−1

2

e−
π
t
x2
12−

t

4πR2 n
2

. (3.9)
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For n = 0 we simply find

〈O0(x1)O0(x2)〉 = −c12
√
π

4πR

Γ
(

∆1+∆2−1
2

)

Γ
(

∆1+∆2

2

)

1

|x12|∆1+∆2−1
. (3.10)

However, for the Kaluza-Klein modes we obtain

〈On(x1)O−n(x2)〉 = − c12π
∆1+∆2

2

2πRΓ
(

∆1+∆2

2

)

( |n|
2πR|x12|

)

∆1+∆2−1

2

K∆1+∆2−1

2

( |n||x12|
R

)

.

(3.11)

Here we have used the integral expression for a Bessel function:

∫ ∞

0

dt

t1+s
e−at−b/t = 2

∣

∣

∣

a

b

∣

∣

∣

s
2
Ks(2

√
ab) . (3.12)

Let us now make the further identification, valid for the case of an M5-brane wrapped

on a circle, that R = g2/4π2, where g2 is the five-dimensional Yang-Mills coupling constant.

We see that

〈O0(x1)O0(x2)〉 = −c12π
3

2

g2
Γ
(

∆1+∆2−1
2

)

Γ
(

∆1+∆2

2

)

1

|x12|∆1+∆2−1
(3.13)

and

〈On(x1)O−n(x2)〉 = −2πc12π
∆1+∆2

2

g2Γ
(

∆1+∆2

2

)

(

2π|n|
g2|x12|

)

∆1+∆2−1

2

K∆1+∆2−1

2

(

4π2

g2
|n||x12|

)

(3.14)

= − c12π
∆1+∆2

2

2|n|Γ
(

∆1+∆2

2

)

(

2π|n|
g2|x12|

)

∆1+∆2
2

e
− 4π2

g2
|n||x12|

(

1 +O
(

g2

|n||x12|

))

,

where we have expanded out the Bessel function for small g2 using

Ks(z) =

√

π

2z
e−z(1 + . . .) . (3.15)

Thus we see that 〈O0(x1)O0(x2)〉 has a purely perturbative interpretation in the five-

dimensional gauge theory but 〈On(x1)O−n(x2)〉 is non-perturbative. In particular, it car-

ries the distinctive exponential dependence e−Sn on the coupling g, where

Sn =
4π2

g2
|n||x1 − x2| . (3.16)

3.1 Matching Kaluza-Klein modes to instanton operators

To capture these correlators from a five-dimensional viewpoint let us define, for any zero-

mode operator O0(x) constructed out of local five-dimensional fields (not necessarily gauge

invariant),

On(x) := In(x)O0(x) . (3.17)
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First, note that this is consistent with the fact that instanton operators are not supersym-

metric in 5D. Suppose we start with a BPS operator Ô in six dimensions. This implies

that there is a supercharge Q such that [Q, Ô] = 0. Let us introduce a superspace with

Grassmaniann coordinate θ in such a way that Q is realised as

Q =
∂

∂θ
+ iθ̄Γm∂m . (3.18)

Then using (3.3) one obtains

[Q,On] =
n

2πR2
θ̄ΓyOn 6= 0 . (3.19)

Therefore, while the Kaluza-Klein zero-modes for BPS operators are still BPS, their as-

sociated higher Fourier modes are not.3 This seems intuitively clear since taking a BPS

state at rest and adding momentum (but not boosting it) will violate the BPS saturation

condition.

Next, we show that the definition of On(x) (3.17) leads to momentum conservation

along the S1. To do this we note that a single-sourced Yang field configuration has

S =
1

4g2
Tr

∫

d5xFµνF
µν

=
1

4g2
Tr

∫ ∞

0
dr r4

∮

S4

dΩ4
FijF

ij

r4

=
4π2|n|
g2

∫ ∞

0
dr , (3.20)

which is finite near r = 0 but diverges as r = R→ ∞ like

S =
4π2|n|
g2

R . (3.21)

Thus S → ∞ and the path integral vanishes. However, if we have a correlation function

where two or more instanton operators are inserted, we can then obtain a finite action if

the total instanton number is zero; i.e. if Tr
∮

S4
∞

F ∧ F = 0 where S4
∞ is the four-sphere at

infinity. Therefore

〈On11(x1)On22(x2) . . .Onkk(x2)〉 = 0 , (3.22)

unless

k
∑

i=1

ni = 0 . (3.23)

This is consistent with momentum conservation along the S1 and crucially different

from monopole operators in the M2-brane interpretation. The latter are used to create

3In the identification of 5D super-Yang-Mills with the compactification of the (2,0) theory on a circle,

the supercharges for the two theories remain the same.
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eleven-dimensional momentum, where the momentum is off the M2-brane and hence not

conserved. Here we wish to construct momentum states along the M5-brane and hence

require conservation of momentum.

Finally, let us show that the correlation function computed in 5D Yang-Mills reproduces

the e−Sn dependence that we saw in eq. (3.16). The evaluation of a correlation function

involving insertions of two or more instanton operators is dominated by the action of a

classical solution that satisfies the boundary conditions

1

8π2
Tr

∮

S4
i

F ∧ F = ni (3.24)

at each of the insertion points xi. However, to construct such a solution seems very difficult.

Instead, consider the case of two instanton operator insertions located at x1 and x2 in

five-dimensional Euclidean space, with instanton charges n and −n respectively. Based on

dimensional analysis, the minimum action for a field configuration is

Smin =
1

4g2

∫

d5xFµνF
µν =

K

g2
|x1 − x2| , (3.25)

where K is a dimensionless constant. To determine K we can consider the case where one

instanton operator is at x1 = 0 and the other is sent to infinity: |x2| = R → ∞. The

diverging action will then be dominated by a single instanton operator of charge n located

at x1 = 0. Comparing with (3.21) we see that K = 4π2|n| and hence

Smin =
4π2|n|
g2

|x1 − x2| = Sn . (3.26)

This reproduces the correct dependence of instanton-operator contributions to the path

integral, as one would expect for the compactification of six-dimensional correlators on S1

from (3.16).

4 Summary

In this note we have discussed a particular class of disorder operators in five-dimensional

gauge theories, dubbed instanton operators. These are defined through a modification of

the boundary conditions for the gauge field in the path integral, which imposes a non-

vanishing second Chern class on any four-sphere that surrounds the insertion point (but no

insertion point of other instanton operators in the same correlation function) in Euclidean

space. We have examined various properties of these operators — such as the fact that they

are not BPS — and in particular we argued that they can be identified as inserting discrete

units of six-dimensional momentum into maximally supersymmetric five-dimensional Yang-

Mills. Therefore, they play an important role in enhancing the Lorentz symmetry to

SO(1, 5), relating the theory to the six-dimensional (2, 0) SCFT and hence in providing a

UV completion.

It would be very interesting to see if these or similar operators also have a role to play

in minimally supersymmetric five-dimensional Yang-Mills theories, perhaps leading instead

to enhanced global symmetries [2–5]; for related recent work see [27–35].
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