320 research outputs found
Beyond transformational leadership in nursing:A qualitative study on rebel nurse leadership‐as‐practice
Most nurse leadership studies have concentrated on a classical, heroic, and hierarchical view of leadership. However, critical leadership studies have argued the need for more insight into leadership in daily nursing practices. Nurses must align their professional standards and opinions on quality of care with those of other professionals, management, and patients. They want to achieve better outcomes for their patients but also feel disciplined and controlled. To deal with this, nurses challenge the status quo by showing rebel nurse leadership. In this paper, we describe 47 nurses’ experiences with rebel nurse leadership from a leadership-as-practice perspective. In eight focus groups, nurses from two hospitals and one long-term care organization shared their experiences of rebel nurse leadership practices. They illustrated the differences between “bad” and “good” rebels. Knowledge, work experience, and patient-driven motivation were considered necessary for “good” rebel leadership. The participants also explained that continuous social influencing is important while exploring and challenging the boundaries set by colleagues and management. Credibility, trust, autonomy, freedom, and preserving relationships determined whether rebel nurses acted visibly or invisibly. Ultimately, this study refines the concept of rebel nurse leadership, gives a better understanding of how this occurs in nursing practice, and give insights into the challenges faced when studying nursing leadership practices
Precision measurement of the half-life and the decay branches of 62Ga
In an experiment performed at the Accelerator Laboratory of the University of
Jyvaskyla, the beta-decay half-life of 62Ga has been studied with high
precision using the IGISOL technique. A half-life of T1/2 = 116.09(17)ms was
measured. Using beta-gamma coincidences, the gamma intensity of the 954keV
transition and an upper limit of the beta-decay feeding of the 0+_2 state have
been extracted. The present experimental results are compared to previous
measurements and their impact on our understanding of the weak interaction is
discussed.Comment: 7 pages, 7 figures, submitted to EPJ
Understanding rebel nurse leadership-as-practice: Challenging and changing the status quo in hospitals
Some nurses are responding rebelliously to the changing healthcare landscape by challenging the status quo and deviating from suboptimal practices, professional norms, and organizational rules. While some view rebel nurse leadership as challenging traditional structures to improve patient care, others see it as disruptive and harmful. These diverging opinions create dilemmas for nurses and nurse managers in daily practice. To understand the context, dilemmas, and interactions in rebel nurse leadership, we conducted a multiple case study in two Dutch hospitals. We delved into the mundane practices to expand the concept of leadership-as-practice. By shadowing rebel nurse practices, we identified three typical leadership practices which present the most common "lived" experiences and dilemmas of nurses and nurse managers. Overall, we noticed that deviating acts were more often quick fixes rather than sustainable changes. Our research points to what is needed to change the status quo in a sustainable manner. To change unworkable practices, nurses need to share their experienced dilemmas with their managers. In addition, nurse managers must build relationships with other nurses, value different perspectives, and support experimenting to promote collective learning
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
The Advanced Virgo+ status
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Virgo Detector Characterization and Data Quality: results from the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave (GW) signals in the past few
years, alongside the two Advanced LIGO instruments. First during the last month
of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact
binary mergers GW170814 and GW170817), and then during the full Observation Run
3 (O3): an 11-months data taking period, between April 2019 and March 2020,
that led to the addition of about 80 events to the catalog of transient GW
sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the
manifold exploitation of the detected waveforms require an accurate
characterization of the quality of the data, such as continuous study and
monitoring of the detector noise sources. These activities, collectively named
{\em detector characterization and data quality} or {\em DetChar}, span the
whole workflow of the Virgo data, from the instrument front-end hardware to the
final analyses. They are described in details in the following article, with a
focus on the results achieved by the Virgo DetChar group during the O3 run.
Concurrently, a companion article describes the tools that have been used by
the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav.
This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has
been split into two companion articles: one about the tools and methods, the
other about the analyses of the O3 Virgo dat
Virgo Detector Characterization and Data Quality during the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave signals in the past few years,
alongside the two LIGO instruments. First, during the last month of the
Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary
mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3):
an 11 months data taking period, between April 2019 and March 2020, that led to
the addition of about 80 events to the catalog of transient gravitational-wave
sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold
exploitation of the detected waveforms require an accurate characterization of
the quality of the data, such as continuous study and monitoring of the
detector noise. These activities, collectively named {\em detector
characterization} or {\em DetChar}, span the whole workflow of the Virgo data,
from the instrument front-end to the final analysis. They are described in
details in the following article, with a focus on the associated tools, the
results achieved by the Virgo DetChar group during the O3 run and the main
prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles
which supercede it and have been posted to arXiv on October 2022. Please use
these new preprints as references: arXiv:2210.15634 (tools and methods) and
arXiv:2210.15633 (results from the O3 run
Virgo Detector Characterization and Data Quality: tools
Detector characterization and data quality studies -- collectively referred
to as {\em DetChar} activities in this article -- are paramount to the
scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA
global network of ground-based gravitational-wave (GW) detectors. They take
place during each phase of the operation of the instruments (upgrade, tuning
and optimization, data taking), are required at all steps of the dataflow (from
data acquisition to the final list of GW events) and operate at various
latencies (from near real-time to vet the public alerts to offline analyses).
This work requires a wide set of tools which have been developed over the years
to fulfill the requirements of the various DetChar studies: data access and
bookkeeping; global monitoring of the instruments and of the different steps of
the data processing; studies of the global properties of the noise at the
detector outputs; identification and follow-up of noise peculiar features
(whether they be transient or continuously present in the data); quick
processing of the public alerts. The present article reviews all the tools used
by the Virgo DetChar group during the third LIGO-Virgo Observation Run (O3,
from April 2019 to March 2020), mainly to analyse the Virgo data acquired at
EGO. Concurrently, a companion article focuses on the results achieved by the
DetChar group during the O3 run using these tools.Comment: 44 pages, 16 figures. To be submitted to Class. and Quantum Grav.
This is the "Tools" part of preprint arXiv:2205.01555 [gr-qc] which has been
split into two companion articles: one about the tools and methods, the other
about the analyses of the O3 Virgo dat
- …