10,895 research outputs found

    Resolution requirements for numerical simulations of transition

    Get PDF
    The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition

    Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes

    Get PDF
    Abstract Background The objective of this study was to quantify the nuclear localization and DNA binding activity of p65, the major transactivating nuclear factor-kappa B (NF-kappaB) subunit, in full-thickness fetal membranes (FM) and myometrium in the absence or presence of term or preterm labor. Methods Paired full-thickness FM and myometrial samples were collected from women in the following cohorts: preterm no labor (PNL, N = 22), spontaneous preterm labor (PTL, N = 21), term no labor (TNL, N = 23), and spontaneous term labor (STL, N = 21). NF-kappaB p65 localization was assessed by immunohistochemistry, and DNA binding activity was evaluated using an enzyme-linked immunosorbent assay (ELISA)-based method. Results Nuclear p65 labeling was rare in amnion and chorion, irrespective of clinical context. In decidua, nuclear p65 labeling was greater in the STL group relative to the TNL cohort, but there were no differences among the TNL, PTL, and PNL cohorts. In myometrium, diffuse p65 nuclear labeling was significantly associated with both term and preterm labor. There were no significant differences in ELISA-based p65 binding activity in amnion, choriodecidual, and myometrial specimens in the absence or presence of term labor. However, parallel experiments using cultured term fetal membranes demonstrated high levels of p65-like binding even the absence of cytokine stimulation, suggesting that this assay may be of limited value when applied to tissue specimens. Conclusions These results suggest that the decidua is an important site of NF-kappaB regulation in fetal membranes, and that mechanisms other than cytoplasmic sequestration may limit NF-kappaB activation prior to term

    Prolonged gastroparesis after corrective surgery for Wilkie's syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Wilkie's syndrome, a rare cause of intestinal obstruction, is related to anatomical and mechanical factors associated with the reduction of retroperitoneal fat padding. The diagnostic challenges of identifying vascular constriction between the aorta and superior mesenteric artery have been answered by advances in the field of computed tomography. Despite diagnostic confusion with intestinal dysmotility syndrome, conservative therapy with nutritional supplementation is the initial approach and duodenojejunostomy is favoured if non-surgical treatment fails.</p> <p>Case presentation</p> <p>We present a case of a 49-year-old woman with Wilkie's syndrome with persistent symptoms of gastroparesis for 15 months following corrective surgery.</p> <p>Conclusion</p> <p>Open and laparoscopic duodenojejunostomy have been described as the best surgical treatment options for Wilkie's syndrome, but further work needs to be done for patients with refractory symptoms of gastroparesis after these corrective surgeries.</p

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Magnetic resonance peak and nonmagnetic impurities

    Full text link
    Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in YBa2Cu3O7\rm YBa_2Cu_3O_{7}, as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear in Nato Science Series: B Physic

    Studying the Effect of Adding Titanium Dioxide (TiO2) Nanoparticles on the Compressive Strength of Chemical and Heat-activated Acrylic Denture Base Resins

    Get PDF
    Problem: The commonly used acrylic resins for fabricating denture base suffer from poor mechanical properties. Aim: This study aimed to assess the effect of incorporating Titanium Dioxide (TiO2) nanoparticles (NPs) as a reinforcement agent on the compressive strength of acrylic denture base materials. Materials and methods: Thirty-two cylindrical specimens (22 mm in height and 12 mm in diameter) were prepared from PMMA resins with and without TiO2 NPs. They were allocated into two main groups according to the materials used such as cold cure and heat cure denture base resins and then subdivided into two subgroups each containing eight specimens: control (without nanoparticles) and experimental (with 2 wt.% TiO2 NPs). TiO2 NPs were synthesized via a chemical processing route and particle morphology and size distribution were assessed using SEM and AFM while XRD technique was employed to determine the crystalline structure of the NPs. Compression test was performed on the specimens using a universal Instron testing machine to compare the compressive strength. Results: Size of crystalline TiO2 NPs varied between 40-80 nm. The mean compressive strength for the cold cure acrylic resin (control group) and its nanocomposite (experimental group) were found as 15.37 MPa and 17.42 MPa while for the heat cure acrylic resin and its nanocomposite were 23.04 MPa and 24.30 MPa. A statistically significant difference was recorded in the compressive strength between the cold cure acrylic resin and its nanocomposite. However, the difference was non-significant in the case of heat cure acrylic resin. Conclusion: The compressive strength of both cold cure and heat cure acrylic resins increased after incorporation TiO2 NPs
    • …
    corecore