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Abstract 

Problem: The commonly used acrylic resins for fabricating denture base suffer from poor 

mechanical properties. 

Aim: This study aimed to assess the effect of incorporating Titanium Dioxide (TiO2) nanoparticles 

(NPs) as a reinforcement agent on the compressive strength of different acrylic denture base 

materials. 

Materials and methods: Thirty-two cylindrical specimens (22 mm in height and 12 mm in 

diameter) were prepared from PMMA resins with and without TiO2 NPs. They were allocated into 

two main groups according to the materials used such as cold cure and heat cure denture base 

resins and then divided into two subgroups each containing eight specimens: control (without 

nanoparticles) and experimental (with 2 wt.% TiO2 NPs). TiO2 NPs were synthesized via a 

chemical processing route. Particle morphology and size distribution were assessed using SEM and 

AFM while XRD technique was employed to determine the crystalline structure of the NPs. 

Compression test was performed on the specimens using a universal Instron testing machine to 

compare the compressive strength.  

Results: Size of crystalline TiO2 NPs varied between 40-80 nm. The mean compressive strength for 

the cold cure acrylic resin (control group) and its nanocomposite (experimental group) were found 

to be 15.37 MPa and 17.42 MPa while for the heat cure acrylic resin and its nanocomposite were 

23.04 MPa and 24.30 MPa. A statistically significant difference was recorded between the 

compressive strengths of cold cure acrylic resin and its nanocomposite. However, the difference 

was non-significant in the case of heat cure acrylic resin.  

Conclusion: The compressive strengths of both cold cure and heat cure acrylic resins increased 

after the incorporation TiO2 NPs. 

Keywords 

PMMA acrylic resin; Heat cure; Cold cure; TiO2 Nanoparticles, Compressive strength, 

Nanocomposite; Denture base. 
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1. INTRODUCTION 

Acrylic resin is the most commonly used material for the construction of denture bases because of 

its advantages such as ease of treating, inexpensive, lightweight, aesthetic properties, and stability 

in the oral cavity [1]. On the other hand, it has poor surface properties and questionable mechanical 

properties [2, 3]. In dentistry, many efforts have been made by reinforcing polymers with different 

materials to improve its properties like the addition of glass, polyurethane, aramid fibers [4, 5], 

metal wires [6], in the forms of particle, flake, fiber or fabric. These efforts significantly enhanced 

the mechanical properties of the acrylic resin; however, further enhancement is still demanded by 

the dentistry professionals. 

Nowadays, new researches in the field of dentistry are aiming to introduce nanotechnology, study 

its application potentials and understand how to gain benefits in future treatments [7]. The principle 

behind the usage of nanoscale reinforcing agents is creating a new class of material termed as 

nanocomposite by altering the filler size to nanometer level, which is responsible for developing 

improved material with new mechanical and physical properties. The nature of the incorporated 

nanoparticles, their size, and morphology play an important role in determining the properties of 

new materials [5]. Various types of nanomaterials such as zirconium oxide [3, 8], carbon nanotube 

[9], aluminium dioxide [10], silver [11], zinc oxide [12] and widely used titanium dioxide [13-16] 

were used to increase the mechanical properties of Acrylic Denture Base Resin (ADBR). Titanium 

dioxide (TiO2) acts as a coloring agent and it can bring additional benefits to ADBR such as 

antimicrobial properties [17]. Furthermore, it enables improving toughness properties and other 

associated mechanical properties of the acrylic resin [18]. 

Several investigations were carried out using various shapes of nanoparticles like nanotubes, or 

nanofibers [19]. Artificial denture encounters a combination of different types of forces during 

mastication. A recent review on the TiO2 based PMMA nanocomposite for denture base 

demonstrated that mechanical tests such as flexural, impact and tensile tests and physical tests such 

sorption, solubility, and color stability were studied [20]. The artificial denture is compressed 

under high occlusal forces during mastication, which could cause failure of the denture through 

fracture. The denture base materials must show resistance against compressive loads. However, the 

compressive strength of PMMA + TiO2 nanocomposite has not been studied extensively [21]. 
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Therefore, it is essential to understand how the nanocomposite behaves under compressive loading 

condition.  

Thus, this study was focused on synthesizing TiO2 nanoparticles in a chemical processing route 

and evaluating the impact of adding of TiO2 NPs on the compressive strength of ADBRs. The null 

hypothesis was that adding TiO2 NPs would not significantly affect the compressive strengths of 

both cold cure and heat cure ADBRs. 

2. MATERIALS AND METHODS 

2.1. Synthesis of Titanium Dioxide nanoparticles 

At first, 15 g of Trigonella Foenum leaves was washed with distilled water more than once to 

eradicate soil, dirt and pores. After that, the leaves were cut into small fragments to be 

homogenized with 50 mL distilled water. They were boiled in a water bath for 30 min at 80 °C. 

The resulted extract was filtered through 0.6 μm filters. For the synthesis of TiO2 NPs 9 ml of the 

prepared leaf extract was mixed with 1 ml titanium trichloride (TiCl3) solution, dissolved in 

deionized water and stirred for 20 min. The resulted solution was sintered at high temperature (80 

oC) to produce well-crystallized nano TiO2 particles [22].  

2.2. Specimen preparation and grouping  

Commercially available PMMA (polymethyl methacrylate) heat cure ( powder and liquid, Vertex, 

Netherlands ) and cold cure (powder and liquid, Vertex, Netherlands) acrylic resins were selected 

as the denture base materials. TiO2 NPs weighing 1.0 gm was added separately to 22 ml of 

chemical (cold cure) and heat (heat cure) activated monomers. The mixtures were ultrasonically 

processed (Soniprep150, England at120 W, 60 KHz) for 2 hrs to ensure that individual NPs were 

well dispersed in the monomers. An electronic balance (Sartorius, Germany with an accuracy of 

0.0001 gm) accuracy was employed to weigh the required quantity of TiO2 NPs and acrylic resins. 

The suspensions of the monomers and TiO2 NPs were immediately mixed manually with acrylic 

powders (49 gm in both cases) to minimize the possible aggregation of the particles and phase 

separation following the manufacturer’s instructions. The mixing continued for approximately 20 

min until the mixture reached a dough-like stage, which was suitable for handling. In all the cases 

the powder to monomer ratio was maintained to 2:1 (49g/22ml) to obtain 2.0 wt.% NP 

concentration within the nanocomposite. Based on a pilot study and existing literature [23], it was 
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found that 2.0 wt.% NP concentration would be appropriate for the resultant naocomposite with 

improved strength. The mixture was poured into a mould with a dimension of 22 mm in height and 

12 mm in diameter to produce specimens for compression testing (Figure1 and Figure 2). In terms 

of colour, there was not much difference after adding ZrO2 for the heat cure resin. However, bright 

pink colour of the cold cure resin was changed to slightly whitish pink after adding ZrO2. The 

cylindrical specimens were prepared with a milling machine (imesicore/450i, Germany) in order to 

get a consistent dimensions for all specimens. The mould was then closed and placed in hydraulic 

press under a pressure of 15 MPa. Then compression technique was used for flasking with type IV 

dental stone (Elite stone, Zhermack, Germany).  In the case of a chemical activated denture base 

resin, clamped flasks were left for 30 min bench curing until the process was finalized. While in 

case of heat-activated denture base resin, the clamped flasks were sent to the processing unit for 

final curing. After processing, the flasks were cooled to room temperature before mould opening 

and the specimens were removed gently from the mould.  

A total number of thirty-two specimens were used in this study. These specimens were divided into 

two main groups according to the materials used (chemical and heat-activated denture base resins) 

then further divided into two subgroups (control and experimental) as follows:  

Group A-control group: eight specimens each for the two types of acrylic resins without any 

nanoparticles.  

Group B-experimental group: eight specimens each for the two types of acrylic resins containing 2 

wt.% of TiO2 NPs.  

  
(a) (b) 

Figure 1. Cold cure acrylic resin (a) without (b) with adding TiO2 NPs. 
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(a)  (b) 

Figure 2. Heat cure acrylic resin (a) without, (b) with adding TiO2 NPs. 

2.3. Nanoparticle characterization 

The sintered TiO2 NPs was characterized in a Scanning Electron Microscope (SEM) to observe the 

particle morphology (Inspect S50, FEI company, Netherlands) at an accelerating voltage of 20 kV. 

Crystalline structure of the NPs were charatcterised by an X-ray Diffraction (XRD) machine 

(Shimadzu - XRD6000, Shimadzu Company /Japan) with Cu-Kα X-rays of wavelength (λ) = Å, 2θ 

range of 10° to 70° and a step of 0.1972°. The NPs were also characterized by an Atomic Force 

Microscopy (micrographs were taken with a digital instruments, Inc. Nanoscope III and Dimension 

3100). The grain size and distribution of synthesized nano particles was obtained from Granularity 

accumulation distribution charts. 

2.4. Compression test 

Compressive testing concludes the behaviour of materials against crushing loads. Compressive 

strength of the nanocomposite specimens was evaluated using a universal Instron testing machine 

(Tmi,testing machine Inc. Amity Ville, NewYork, USA) where each specimen was placed on the 

test platform and compressed to record the deformation at various loads as shown in Figure 3 [24]. 

 

Figure 3. Typical force vs deformation curves for different resins 
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The maximum capacity of the load cell was 80 N and the crosshead speed was 1 mm/min (Figure 

4). Before the compression test cross-sectional area of each specimen was determined. The 

specimens were preserved in a distilled water bath at 37 ºC for two days before testing.  

 

Figure 4. Compression testing machine with specimen 

The compressive strength (σ) in MPa of different specimen groups were calculated by Equation 1. 

 

(1) 

where F is the maximum applied load in N collected from the load-deformation curve and A is the 

cross-sectional area of the specimen in mm2. 

The data obtained from the compression tests were statistically analyzed using independent t-test 

and ANOVA (Analysis of Variance) after adjusted for multiple comparisons using Bonferroni 

Correction. Statistical tests were performed using SPSS 21.0 (Statistical Package for Social 

Science; IBM Statistics) for which the level of significance was fixed at 5%. 

 

 

Specimen 
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3. RESULTS 

The results from this investigation could be divided into two main parts. The first part studied 

characteristics of the TiO2 NPs using XRD, SEM and AFM while the second part measured 

compressive strength of the cold and heat cure acrylic resins with and without adding TiO2 NPs. 

3.1. Characterisation of TiO2 NPs 

3.1.1. Crystalline structure of TiO2 NPs  

The crystalline nature of the synthesized TiO2 NPs was recognized by the XRD spectrum 

presented in (Figure 5) Five major peaks were detected in the XRD spectrum at 2θ = 25.64°, 

36.95°, 48.44°, 56.1° and 64.15°, which corresponded to the crystal planes (101), (004), (200), 

(105) and (204) respectively. The broad bottom and sharp peak indirectly confirmed the smaller 

size and crystallite nature of the synthesized nanoparticle [21]. 

 

Figure 5. XRD Analysis of TiO2 NPs 

3.1.2. 2-D surface morphology and particle size 

Figure 6 illustrates an SEM image of the prepared TiO2 NP. According to the micrograph, the 

particles appeared spherical in shape with a fairly uniform size distribution ranging from 37.7 nm 

to 81.65 nm. However, the larger particles might indicate aggregations of the smaller particles [23]. 
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Figure 6. SEM image of TiO2 NPs  

3.1.3. 3-D surface morphology and granularity 

Figure 7 shows three-dimensional surface area plots (1.5×1.5 μm2) and granularity accumulation 

distribution chart of TiO2 NPs deposited by drop-casting technique on a glass substrate. The results 

showed that the root mean square value, average roughness, and average grain size of the NPs 

were approximately 0.441 nm, 0.36 nm, 81.65 nm respectively and the latest value agreed with the 

value obtained from SEM observation. The granularity cumulation chart showed that the particle 

size distribution followed normal distribution to some degree with larger standard deviation with 

majority of the values fell in the range between 50 nm to 130 nm.  

  
(a) (b) 
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Figure 7. (a) 3D AFM image and (b) granularity distribution chart of TiO2 NPs. 

3.2. Compressive strength 

Figures 8 and Figure 9 present compressive strengths of the heat cure and cold cure ADBR resins 

without and with TiO2 NPs. Analysis of the compressive strength data indicated that the addition 

of 2 wt.% TiO2 NPs to chemical and heat activated ADBRs increased the compressive strengths 

when compared with the ADBRs without any nanoparticles for all specimens in the two groups. 

  

Figure 8. Compressive strength of cold cure ADBR before and after incorporation TiO2 NPs. 
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Figure 9. Compressive strength of heat cure ADBR before and after incorporation TiO2 NPs. 

Statistical analysis of the mean compressive strength values showed significant difference for the 

cold cure ADBR and a non-significant difference for the heat cure ADBR (Table 1). The results 

were presented graphically in Figure 10. However, the compressive strength of the cold cure 

nanocomposite was significantly lower than the heat cure nanocomposite. 

Table 1. Statistical data of compressive strength (MPa) of cold cure and heat cure acrylic resins. 

Type Group 
Number of 

specimens 

Mean Strength 

(MPa) 

Standard 

deviation, 

SD (MPa) 

t-Test P-Value 

Cold cure 

Control 

group 
8 

135.992 15.213 

-2.318 
0.036 

Significant Experimental 

group 
8 

154.138 14.055 

Heat cure 

Control 

group 
8 

203.866 9.815 

-2.025 

0.062 

Non-

significant 
Experimental 

group 
8 

215.001 10.684 

 

  

Figure 10. Mean compressive strength (MPa) values of cold cure and heat cure ADBR before 

and after incorporation TiO2 NPs. 
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3.3. Observation of failed specimen 

Examples of failed specimens after the compression tests are presented in Figure 11. It can be 

observed that the diameter in the middle of the samples increased forming a bulged shape. In 

general, the cold cure specimens deformed by vertical splitting whereas the heat cure ones showed 

shear type failure. However, no significant difference was observed between the specimens with 

and without the nanoparticles. 

  
(a) (b) 

Figure 11. Failed specimens made of acrylic resins with TiO2 nanoparticles: (a) cold cure and 

(b) heat cure. 

4. DISCUSSION 

The most common material used in a prosthodontics field is Polymethyl methacrylate (PMMA), 

but it is characterized by weak physical and mechanical properties. Many attempts were made 

previously to overcome this limitation by adding different types and sizes of filler materials [12, 

20]. Based on the idea that the decrease of filler particle size would aid in improving the 

mechanical properties of the resins [25], spherical nanoparticles (NPs) of titanium dioxide (TiO2) 

synthesized via a chemical route was applied to improve the mechanical properties of PMMA 

resins [18]. In the literature, various mechanical tests including flexural, impact, fracture toughness 

etc. have been carried out to understand pre-clinical performance of the denture base materials. The 

current study was conducted to examine the impact of addition of TiO2 nanoparticles on the 

compressive strength of PMMA. 

Based on the results obtained in this study, it was found that the compressive strength of the cold 

cure PMMA resin significantly affected after adding 2 wt.% TiO2 nanoparticles. However, in the 

case of heat cure resin, the changes in compressive strength was not significant. Therefore, the 

hypothesis was partially rejected. 
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The results of this study showed that adding TiO2 NPs in both chemical and heat activated 

(PMMA) resins (experimental groups) would improve their compressive strengths compared to the 

control groups (without addition of TiO2 nanoparticles) by 13.34% and 5.46% respectively. This 

may be attributed to the tiny particle size used (nanoparticle of 40-80 nm according the definition  

[26], high surface area and the relatively low percentage of nanofiller which may assist in a good 

diffusion of these fillers in a polymer matrix [21, 27]. This diffusion will aid to bind the NPs with 

polymer matrix strongly under adhesion force that produced limitation in polymer chains 

movement and improve mechanical properties of the ADBRs. 

Although the improvement in the case of heat-activated ADBR was statistically non-significant, it 

was significant for chemical activated ADBR. The reason behind this different mechanical 

behavior could be due to insufficient polymerization time for the chemical activated ADBR 

mixture which was characterized by the evaporation of the monomer during the passage of the 

polymer mixture through the polymerization stages up to dough-like stage leaving porosity which 

leads to a decrease in the compressive strength. Mixing the non-functionalized TiO2 nanoparticles 

with the polymer mixture could lead them to deposit into the interstitial porosities within the 

polymer matrix and interrupt crack propagation inside the material [20], which increased 

compressive strength of the cold cure nanocomposite compared to the control group.  

Moslehifard et al. [21] tested the effect of incorporation of TiO2 NPs up to 2 wt.% in heat cure 

PMMA and no significant differences was found between the compressive strength of the 

nanocomposite and pure resin. The findings from this investigation agreed with the reported 

results. The current results were also in agreement with that added TiO2 nanoparticles to the acrylic 

[18] resin and found that the nanoparticles would create strong interfacial bond with the acrylic 

resin that led to improvement of its mechanical properties. Also, the current results were supported 

by Harini et al. [28] who found that reinforced PMMA with different concentrations of TiO2 NPs 

would produce higher flexural strength than those of traditional PMMA. Several studies have 

added nanomaterials such as ZrO2 [3] and Ag NPs [29] in deferent ratios to heat cure acrylic resins; 

they concluded that nanomaterials could improve the acrylic resins mechanical properties without 

causing any adverse effect and is highly recommended in the palatal portion of the acrylic base of 

maxillary dentures. 
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In this in vitro study, even though significant improvement was obtained for the case cold cure 

nanocomposite, but its overall compressive strength (17.423 MPa) was even lower than that of the 

pure heat cure resin (23.045 MPa) by approximately 32%. In terms of strength test, only 

compressive test results are shown here. Other tests such as flexural strength are being conducted 

to be published in a future paper. 

Further studies could be conducted to understand the distribution of nanoparticles within the 

matrices and the failure modes and mechanisms of the two nanocomposite materials. 

The development of TiO2 reinforced PMMA (cold cure) nanocomposite with significantly 

improved compressive strength than the pure resin could pave the way for new class of denture 

base material with longer clinical life. Functional life tests such as equivalent flexural strength [30] 

and tooth bonding strength on the actual denture can be conducted before the clinical trial. The 

significant improvement in compressive strength of the cold cure resin with the addition of NPs 

could open up the opportunities for denture base reparing [31]. 

5. CONCLUSION 

In this investigation, the compressive strength of denture base nanocomposites made of cold and 

heat cure acrylic resins incorporated with TiO2 nanoparticles (NPs) was studied compared to the 

pure resins. The synthesized NPs showed a size distribution ranging between 40 to 80 nm and 

spherical shapes. XRD results confirmed the crystallinity of the NPs. In general, all the 

nanocomposite specimens showed higher compressive strength than both the pure resins. 

However, significant difference in compressive strength was only found for the chemical activated 

resin. Therefore, addition of TiO2 NPs to acrylic resin is strongly recommended during 

construction of denture base. 
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