7,676 research outputs found

    A computational method for viscous incompressible flows

    Get PDF
    An implicit, finite-difference procedure for numerically solving viscous incompressible flows is presented. The pressure-field solution is based on the pseudocompressibility method in which a time-derivative pressure term is introduced into the mass-conservation equation to form a set of hyperbolic equations. The pressure-wave propagation and the spreading of the viscous effect is investigated using simple test problems. Computed results for external and internal flows are presented to verify the present method which has proved to be very robust in simulating incompressible flows

    Three-dimensional incompressible Navier-Stokes computations of internal flows

    Get PDF
    Several incompressible Navier-Stokes solution methods for obtaining steady and unsteady solutions are discussed. Special attention is given to internal flows which involve distinctly different features from external flows. The characterisitcs of the flow solvers employing the method of pseudocompressibility and a fractional step method are briefly described. This discussion is limited to a primitive variable formulation in generalized curvilinear coordinates. Computed results include simple test cases and internal flow in the Space Shuttle main engine hot-gas manifold

    Potential applications of computational fluid dynamics to biofluid analysis

    Get PDF
    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis

    INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    Get PDF
    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix

    Modeling the X-rays Resulting from High Velocity Clouds

    Get PDF
    With the goal of understanding why X-rays have been reported near some high velocity clouds, we perform detailed 3 dimensional hydrodynamic and magnetohydrodynamic simulations of clouds interacting with environmental gas like that in the Galaxy's thick disk/halo or the Magellanic Stream. We examine 2 scenarios. In the first, clouds travel fast enough to shock-heat warm environmental gas. In this scenario, the X-ray productivity depends strongly on the speed of the cloud and the radiative cooling rate. In order to shock-heat environmental gas to temperatures of > or = 10^6 K, cloud speeds of > or = 300 km/s are required. If cooling is quenched, then the shock-heated ambient gas is X-ray emissive, producing bright X-rays in the 1/4 keV band and some X-rays in the 3/4 keV band due to O VII and other ions. If, in contrast, the radiative cooling rate is similar to that of collisional ionizational equilibrium plasma with solar abundances, then the shocked gas is only mildly bright and for only about 1 Myr. The predicted count rates for the non-radiative case are bright enough to explain the count rate observed with XMM-Newton toward a Magellanic Stream cloud and some enhancement in the ROSAT 1/4 keV count rate toward Complex C, while the predicted count rates for the fully radiative case are not. In the second scenario, the clouds travel through and mix with hot ambient gas. The mixed zone can contain hot gas, but the hot portion of the mixed gas is not as bright as those from the shock-heating scenario.Comment: 15 pages, 9 figures, 1 table. Accepted for publication in the Astrophysical Journa

    Simulations of High-Velocity Clouds. I. Hydrodynamics and High-Velocity High Ions

    Get PDF
    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds, where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization (NEI) algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sight lines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass \approx 120 Msun) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass \approx 4e5 Msun) remained largely intact, although deformed, during its simulation period (240 Myr).Comment: 20 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Simulations of High-Velocity Clouds. II. Ablation from High-Velocity Clouds as a Source of Low-Velocity High Ions

    Get PDF
    In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dependent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.Comment: 17 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    The Evolution of Gas Clouds Falling in the Magnetized Galactic Halo: High Velocity Clouds (HVCs) Originated in the Galactic Fountain

    Get PDF
    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z=5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (> 0.1 hydrogen atoms per cc) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 micro Gauss). We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.Comment: 46 pages, 16 figures, 3 tables. Accepted for publication in Ap

    Mixing between high velocity clouds and the Galactic halo

    Get PDF
    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.open0

    Beautiful is Good and Good is Reputable: Multiple-Attribute Charity Website Evaluation and Initial Perceptions of Reputation Under the Halo Effect

    Get PDF
    The halo effect has been extensively used to understand how people make judgments about the quality of an object. Also, the halo effect has been known to occur when people evaluate multi-attribute objects. Although websites consist of multiple attributes and dimensions, prior research in information systems has paid little attention to how people evaluate multi-attribute websites and associated halos. Furthermore, research investigating how initial evaluations of reputation are formed toward unknown objects under the halo effect is scarce. Based on these two research gaps, the purposes of this study are to identify whether there is evidence of salient halos in the evaluation of multi-attribute websites and to theorize initial perceptions of reputation. To accomplish these objectives, we introduce a framework for classifying halos based on attributes and dimensions. Also, this study employs charity websites as a multi-attribute donation channel consisting of three attributes of information content quality (mission information, financial information, and donation information) and four attributes of system quality (navigability, download speed, visual aesthetics, and security). Based on the proposed framework, this study proposes four types of halos that are relevant to charity website evaluation—collective halo (attribute-to-attribute), aesthetics halo (attribute-to-dimension), reciprocal-quality halo (dimension-to-dimension), and quality halo (dimension-to-dimension). The results of structural equation modeling and other analyses provide evidence of the various proposed halos
    corecore