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SUMMARY

The operation of the INS3D code, which computes steady-state solutions to the incom-
pressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility
approach combined with an approximate factorization scheme. This publication describes key
operating features to orient new users. This includes the organization of the code, description
of the input parameters, description of each subroutine, and sample problems. Details for more
extended operations, including possible code modifications, are given in the Appendix.

INTRODUCTION

This publication is intended as a reference guide for users of the INS3D code (ref. 1).
Many recent advances in computational fluid dynamics (CFD) have been made in conjunction
with compressible flow computations. Therefore, the code INS3D is structured to take advantage
of fast algorithms developed for compressible flows. The primary features can be summarized as
follows.

(1) A pseudocompressibility approach is used in which a time derivative of pressure is added
to the continuity equation, which together with the momentum equations form a set of
four equations with pressure and velocity as the dependant variables (refs. 2, 3, 4).

(2) The coordinates are transformed for general three-dimensional applications.
(3) This set of equations is solved using an approximate-factorization scheme (refs. 5, 6).

(4) Computational efficiency is achieved using a diagonal algorithm (ref. 7). A block tridi-
agonal option is also available.

(5) When a steady-state solution is reached, the modified continuity equation will satisfy
the divergence-free velocity field condition.
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The code has been verified by computing fundamental fluid dynamics problems such as
the flow through a channel (ref. 1), flow over a backward-facing step (ref. 8), and flow over a
circular cylinder (refs. 1 and 8). Three-dimensional cases include flow over an ogive cylinder(ref.
9), flow through a rectangular duct(ref. 1), wind-tunnel-inlet flow (ref. 10), cylinder-wall juncture
flow and flow through multiple posts mounted between two plates (refs. 11 and 12). The most
striking application of the present code is the flow simulation in the power head portion of the
Space Shuttle Main Engine (refs. 13 and 14).

GENERAL USER NOTES

This section contains some important features of INS3D which will be useful for the
first-time user. The arrays in the program are dimensioned using a single index I, which is a
function of the three single-direction indices.

I=17+ (K-1)*JMAX + (L-1)*JMAX*KMAX

Here, J is the index in the ¢-direction, K is the index in the n-direction, and L is the index in
the (-direction. The grid point locations are stored in the single index arrays X, Y, and Z. The
primitive variables are stored in the array Q, where

Q(1,I) = pressure
Q(2,I) = u velocity component
Q(3,I) = v velocity component

Q(4,I) = w velocity component

To run a specific geometry, the user will have to change a number of different subroutines.
These subroutines are GRID, IC, BC, and SMOOTH. The details of each of these changes are
included here.

The grid coordinates for the problem should be loaded into the X, Y, and Z arrays in
subroutine GRID. This subroutine is called once at the beginning of the program execution. If
the grid can be generated algebraically, this can be done in this subroutine. If the coordinates
are generated with some other program, then the coordinates merely have to be read in and
stored in the X, Y, and Z arrays. In defining the geometry for the problem, the coordinates
should be normalized by the characteristic length of the problem because the program assumes a
characteristic length of unity when it uses the input Reynolds number.

The subroutine IC should be changed to set the initial conditions for the the specific
problem. It is usually adequate to set the pressure everywhere to unity, and to set the velocity
components to freestream conditions everywhere except on no-slip walls, where zero velocity
should be specified. The velocity field should also be normalized with the characteristic velocity
for the problem because the program assumes a characteristic velocity of unity when using the
Reynolds number.

The third subroutine which needs to be changed is BC, where the explicit boundary
conditions are applied. By default, the code will update all the interior points during one iteration,
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and then call subroutine BC. See the Numerical Algorithm section in the appendix for more details
on the proper application of boundary conditions.

Changes may also have to be made to the subroutine SMOOTH, which adds the artificial
dissipation to the right side of the equations. In general, fourth-order explicit smoothing is added
at all the interior grid points. Stability of the calculations is enhanced if second-order smoothing
is added at the interior points adjacent to the inflow and outflow boundaries. Sometimes when
stability problems occur near severe geometries or grid areas, the use of second-order explicit
smoothing will help to smooth out the disturbance.

Another change of primary importance is to correctly set the dimensions of the arrays
for the specific problem. This is easily done with the use of one parameter statement which is
included in almost all the subroutines. Two parameters are included in this statement, JKLMAX
and IMX. The first parameter JKLMAX should be set to the maximum of JMAX, KMAX, or
LMAX. The second parameter IMX should be set equal to the total number of grid points, that is,
the product of JMAX, KMAX, and LMAX. All of the arrays are passed between the subroutines
with the use of common blocks.

Periodic cases can be handled if the problem is set up so that the periodic direction
corresponds with the 7-direction. The K=KMAX and K=1 planes must be adjacent to each
other and are treated as interior points in this case.

Two-dimensional problems can be handled by setting JMAX, KMAX, or LMAX to three.
For instance, if the two-dimensional problem is chosen to lie in the JK plane in computational
space, then LMAX should be set to three. Assuming that the physical space is set up to lie in the
xy plane, the grid should be duplicated in three z = constant planes. The dependant variables
should be initialized to have identical values in the L=1, 2, and 3 planes. No calculations will
be done in the direction which has a maximum dimension of three, and calculations will only be
done on the middle of the three planes. A loop should be put in subroutine BC which copies the
data from the middle plane to the two outer planes after each iteration.



VARIABLES IN NAMELIST DATAIN

The input for the program is read in with the use of a namelist. Each of the variables
in this namelist are described here. This is done in tabular form; the entries are the name of
the variable, the possible range of acceptable values, its default value, and a description of the
variable.

Variable Range Default Description

BETA 0.1 to 50.0 5.0 This is the artificial compressibility parameter. The
artificial speed of sound is a function of this param-
eter, and the minimum value this should take is de-
pendent on the geometry. The maximum value is
bounded because of the error introduced by the ap-
proximate factorization. For more details, see the
pseudocompressibility section in the Appendix.

DISKOUT | True or False False This is a logical variable which controls whether sub-
routine DISKIO is called at the end of the program
to write the Q array to disk. The array is written

out to unit 51.

DTAU 0.0001 to 0.1 0.05 This is the time step used at each iteration. If a
stability problem occurs, this parameter should be
reduced.

DXDT —o00 to oo 0.0 This is a parameter which is used to specify transla-
tion of the grid in the x-direction. It is used when
the time varying metrics are computed.

ENDACC Oorl 1 This is an integer which controls the spatial differ-
encing of the metrics at points next to nonperiodic
boundaries. f ENDACC=1, first-order-accurate one-
sided differencing is used. Otherwise, second-order-
accurate one-sided differencing is used.

IBLKDIA 1or2 2 This integer determines whether the code will use a
standard block algorithm for the inversion of the ap-
proximately factored matrices or a diagonalized al-
gorithm. For IBLKDIA = 1, the standard algorithm
is used; for IBLKDIA = 2, the diagonal algorithm is
used. The standard algorithm inverts 4-by-4 block
tridiagonal matrices whereas the diagonal algorithm
inverts scalar tridiagonal matrices. The diagonal al-
gorithm is about three times faster for a single time
step than the standard algorithm, and has the same
convergence characteristics.




Variable

Range

Default

Description

IMPSMO

2o0or4

2

This integer determines the order of the implicit arti-
ficial dissipation when the diagonal algorithm is used.
When set equal to 2, second-order dissipation is used,
when set equal to 4, fourth-order dissipation is used.
Not much difference has been seen between the two
different orders. The fourth order is slightly more
expensive as it requires the inversion of scalar penta-
diagonal matricies.

IORTHO

lor?2

This integer affects the assumptations in computing
the viscous terms. For IORTHO=1, the nonorthogo-
nal contributions to the viscous terms are included in
the right-hand side of the equations by calling subrou-
tine VISRHS2. For IORTHO=2, the viscous terms

are simplified by assuming an orthogonal grid.

IPRNT

1 to NTMAX

This integer controls the frequency with which the
convergence history is written. Convergence data is

-written every IPRNT*" iteration.

ISTART

Oorl

This variable is an integer which controls the restart
capability of the code. If ISTART = 0, then the
code starts from the conditions specified in subrou-
tine IC. If ISTART = 1, then the code calls subrou-
tine DISKIO which attempts to read in NT, IMAX,
KMAX, LMAX and the Q array from unit 20. The
grid is always computed in subroutine GRID regard-
less of the value of ISTART.

JMAX

52

This integer is the maximum number of points used
in the ¢-direction.

KMAX

63

This integer is the maximum number of points used
in the 7-direction.

KPERI

This integer allows one to specify a periodic boundary
between the K=KMAX and K=1 planes. If KPERI
= 1, the boundary is assumed to be periodic and the
points at K=1 and K=KMAX are treated as interior
points. If KPERI = 0, these points are treated as
normal boundary points.

LMAX

35

This integer is the maximum number of points used
in the {-direction.




Variable

Range

Default

Description

NPRNT

>1

50

This integer controls the frequency with which flow
solution output is to be written during the iteration
process. Every NPRNT** iteration subroutine OUT-

PUT is called, which prints out the values for Q, X,
Y, Z, Cp, and the Jacobian for specified indices.

NTMAX

>1

100

This integer is the number of iterations the program
will run.

PLOT3D

True or False

False

This logical variable determines whether unformat-
ted files to be used with the plotting program known
as PLOT3D will be written at the end of the com-
putation. If the variable is TRUE, the grid file is
written to unit 30, and the Q file is written out to
unit 31.

REYNUM

0.0

1000

This is the Reynolds number based on unit charac-
teristic length and unit characteristic velocity.

RL1

0.0 or 1.0

1.0

This variable is used for a geometry in which the
volume of the grid cells becomes zero at L = 1. This
can occur with an O-grid whose innermost circle has
a radius of zero. This variable then represents the
radius at the L = 1 circle, and is used only when it
is set equal to zero.

SMU

0.0

0.1

This real number is the smoothing coeflicient used
for the explicit dissipation added to the right-hand
side. This should be one-half to one-third the value
of SMUIM.

SMUIM

0.0

0.3

This real number is the smoothing coefficient used for
the implicit dissipation added to the left-hand side.
This should be two to three times the value of SMU.

SMUPRS

0.0

1.0

This real number is a coefficient which multiplies the
smoothing terms added to the right-hand side of the
pressure equation in addition to SMU. It may become
necessary to reduce this coefficient as the solution
converges so that the divergence of the velocity will
continue to converge toward zero. For more details,
see the section on the effects of smoothing on pressure
in the pseudocompressibility section of the Appendix.




DESCRIPTION OF ROUTINES AND CODE STRUCTURE

In this section, a brief description of the subroutines found in INS3D is given. A flow
chart of the main code and of subroutine STEP is then presented.

Program MAIN

Program MAIN handles the main control of the program. It first calls routine INITIA
and then enters the main time-iteration loop. Inside this loop, the routines STEP, BC, and VISCT
are called. If printing of the solution is requested for the current iteration, then OUTPUT is also
called. After the iteration process is finished, MAIN also handles the writing of the solution to
disk by calling DISKIO and P3DOUT if requested.

Subroutine AMATRX

Subroutine AMATRX computes the Jacobian matrix A; and loads it into the D array in
common block DUDD. It is computed and stored for all the points along a single grid line (two of
the three j,k,l indicies held constant) The proper metrics must be loaded into the metric storage
array depending on whether A, B, or C is being computed. The Jacobian matrix is used to fill
the implicit side matrices.

Subroutine BC

Subroutine BC enforces the boundary conditions explicitly. It is called at the end of
each iteration, after all the interior points have been updated to the new time-step. This routine
must be changed for each specific geometry run.

Subroutine BTRI4 and PBTRI4

Subroutines BTRI4 and PBTRI4 invert a system of block tridiagonal matrices where
the block size is 4 by 4. The system of equations must be loaded into the matrices in the BTRI
common block. The solution is overwritten onto the forcing-function array F. BTRI4 handles the
nonperiodic case and PBTRI4 handles the periodic case.

Subroutine COMET

Subroutine COMET computes and stores the elements of the first two eigenvectors of
the Jacobian matrix. These quantities are used in computing the similarity transformation which
diagonalizes the Jacobian matrix. This routine must be called prior to calling TK or TKINV.

Subroutine DISKIO

Subroutine DISKIO is used to read or write the flow field solution (the array) from the
disk. Data is read from fortran unit 20, and is written to fortran unit 51.
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Subroutine ETAINV, XIINV, and ZETAINV

Subroutines ETAINV, XIINV, and ZETAINV load the implicit side matrices for each
of the three different sweeps of the diagonal algorithm. The eigenvalues of the Jacobian matrix
are computed and differenced to form the elements of the diagonal matrices. The implicit viscous
terms are added and then either second- or fourth-order artificial dissipation terms are added. The
system is then inverted by the appropriate scalar inversion routines. Since the first two eigenvalues
are identical, the left-hand sides of the first two equations are identical; only the forcing function
is different. Therefore these two are inverted together, and the last two equations are inverted
separately.

Subroutine FILTRJ, FILTRK, FILTRL, AND PFILTK

Subroutines FILTRJ, FILTRK, FILTRL, and PFILTK load the implicit-side matrices
for each of the three different sweeps of the block algorithm. PFILTK is used for the periodic
case. These routines load the matrices with the difference of the Jacobian matrices and add the

implicit viscous terms as well as second-order artificial dissipation terms. The system is then
inverted using BTRI4 or PBTRIA4.

Subroutine GRID

Subroutine GRID is used to compute the computational grid and load the X, Y, and Z
arrays. GRID is called at the beginning of every run whether or not it is a restart. This routine
must be changed for each specific geometry run. ’

Subroutine IC

Subroutine IC is called at the beginning of all nonrestart runs and is used to initialize
the flow-field-array Q and the eddy-viscosity-array VNUT. The desired starting conditions must
be coded for each specific geometry run.

Subroutine INITIA

Subroutine INITIA initializes some variables and arrays and reads in the input namelist
to obtain the user-specified parameters. It calls routines GRID, JACOB, and then calls DISKIO
if the run is a restart or IC if it is not.

Subroutine JACOB

Subroutine JACOB computes the Jacobian of the transformation for the given grid and
stores it in array DJ.



Subroutine LUDEC and LUSOL

Subroutines LUDEC and LUSOL perform L-U decompostions and solutions for a 4-by-4
matrix. These subroutines are called by subroutines BTRI4 and PBTRI4.

Subroutine METRIC

Subroutine METRIC computes the metrics for a constant grid line and stores them in
the metric arrays in common block MET1.

Subroutine OUTPUT

Subroutine OUTPUT prints out the flow variables, the x, y, and z location, the Jacobian
and the pressure coeflicient for points along a given line.

Subroutine P3DOUT

Subroutine P3DOUT writes out the flow solution and the grid point variables in a format
compatible with the PLOT3D plotting program. The grid-file is written to Fortran unit 30 and
the g-file is written out to Fortran unit 31.

Subroutine PENTA, PENTA2, PENTAP, and PENTAP2

Subroutines PENTA, PENTA2, PENTAP, and PENTAP2 invert a scalar pentadiagonal
system of equations. A whole plane of equations are inverted at once and must be loaded into the
arrays in the PNTD common block. A whole plane of data is done at once so that the loops can
be fully vectorized in the nonsweep direction. These routines are called by the diagonal algorithm
routines when fourth-order implicit artificial dissipation is used.

Subroutine RHS

Subroutine RHS computes the right-hand side of the governing equations by computing
the spatial difference of the flux vectors at each point. Artificial dissipation is added by calling
subroutine SMOOTH and the right-hand side viscous terms are added by calling subroutine
VISRHS and subroutine VISRHS2. The right-hand side of the equations is stored in array S.

Subroutine SMOOTH

Subroutine SMOOTH adds the explicit fourth-order artificial dissipation terms to the
right-hand side in the S array for all interior points. At most of the points next to the boundaries,
a shifted fourth-order stencil is used. At points next to the inflow and outflow boundaries, second-
order dissipation should be used to help maintain stability. This routine should be changed for
each new geometry run.



Subroutine STEP

Subroutine STEP marches the solution forward in time one iteration. It first calls RHS,
and then successively calls three implicit-sweep routines. Depending on the value of IBLKDIA,
either the block algorithm routines are called or the diagonal algorithm routines are used. After
the inversion process is finished for all three sweeps, the flow variables at all interior points are
updated to the new time-step.

Subroutine TK and TKINV

Subroutines TK and TKINYV load the eigenvector matrix (TK) and its inverse (TKINV)
and multiplies them by the forcing function stored in the S array. This is done for a single grid
line at a time. The proper metrics must be loaded in the common block MBUF, and the elements
of the first two eigenvectors must be loaded by the subroutine COMET. These routines are used
in the diagonal inversion process.

Subroutine TRI, TRI2, TRIP, and TRIP2

Subroutines TRI, TRI2, TRIP, and TRIP2 invert a scalar pentadiagonal system of
equations. A whole plane of equations are inverted at once and must be loaded into the arrays
in the PNTD common block. A whole plane of data is done at once so that the loops can be
fully vectorized in the nonsweep direction. These routines are called by the diagonal algorithm
routines when second-order implicit artificial dissipation is used.

Subroutine VISRHS and VISRHS2
Subroutines VISRHS and VISRHS2 compute the right-hand-side viscous terms and adds

them to the S array for all the interior points. The viscous terms for an orthogonal mesh are
computed in VISRHS, and the nonorthogonal terms are computed in VISRHS2.
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SAMPLE CALCULATIONS

In this section three sample calculations are presented. The first example is a two-
dimensional calculation of flow over a backward-facing step, and the second is the flow around a
two-dimensional circular cylinder. The third case is flow around a three-dimensional post mounted
normal and between two flat plates. Both the diagonal algorithm (IBLKDIA = 2) and the block
algorithm (IBLKDIA = 1) were used for the backward-facing step, and the diagonal algorithm
was used for the last two cases. The calculations were carried out on a Cray XMP-48. The
average computer time on this machine used by the code for each case is approximately 3 x 10~°
secs per grid point per iteration for the diagonal algorithm. The block algorithm is between 2.5
and 3 times slower than this for most cases.

Backward-Facing Step

The flow over a backward-facing step with a two-to-one expansion ratio was computed
for a laminar range of Reynolds numbers (based on twice the step height) between 100 and 800.
A 65-by-33 algebraically-generated H-grid was used with the inflow boundary placed at the step.
The grid was clustered near all the no-slip walls using an exponential stretching function.

The relevant parameters used in this calculation are given in the following list.

BETA =35 KPERI =0
DTAU =0.1 LMAX = 65
ENDACC =1 SMU =0.1
IORTHO =2 SMUIM =10.3
JMAX =3 SMUPRS =0.1
KMAX =33

The length of the separation bubble behind the step was calculated for each Reynolds
number and these results are compared to the experimental results of Armaly et al. (ref. 15).
This comparison is shown in Figure 1, which shows good agreement between the experiment
and the calculations for both the diagonal algorithm and the block algorithm. The convergence
history is shown in Figure 2. Here, the rms of the change in the flow variables (RMSDQ) at each
time-step is plotted versus iteration number. Three cases are plotted: (1) the block algorithm,
(2) the diagonal algorithm with second-order implicit smoothing, and (3) the diagonal algorithm
with fourth-order implicit smoothing. The general convergence histories are the same for all three

cases, and they are all able to converge about three-and-a-half orders of magnitude in less than
1000 iterations.

Circular Cylinder

The flow over a two-dimensional circular cylinder is a simple example of external flow
over a bluff body which will have separation. Some of the flow quantites from the calculation
were compared to experimental values in reference 1 and agreement was found.

An O-grid which wraps around the cylinder is used for the grid. The £- and 7-directions
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Figure 1.- Separation length versus Reynolds number for flow over a backward facing step.
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Figure 2.- Convergence history for flow over a backward facing step.

14



are shown in Figure 3. The { axis points in the radial direction and the n axis points along the
circumferential direction since any periodic direction must be associated with the 7 direction.

FLOW =
—r K=1
K = KMAX
K = KMAX -1

Figure 3.- Schematic diagram of an O-grid around a circular cylinder.

The relevant parameters used in this calculation are given in the following list.

BETA =5 KPERI =1
DTAU = 0.1 LMAX =41
ENDACC =1 SMU =0.1
IORTHO =2 SMUIM =0.3
JMAX =3 SMUPRS =0.1
KMAX = 80

The convergence history is shown in Figure 4 in which the log of RMSDQ and the log of
RMSDIV are plotted versus the iteration number. The variable RMSDQ is the rms of the change
of all the variables during one iteration and RMSDIV is the rms of the divergence of velocity
calculated during that time-step.

This calculation is typical of most external flow problems in that the calculation is not as
sensitive to the downstream boundary conditions as in an internal flow problem. This calculation
was found to work well when the downstream variables were updated using only a second-order
extrapolation.

Three-Dimensional Post

The geometry of this calculation consists of a circular post mounted between two parallel
flat plates, such that the post is perpendicular to the plates and the incoming flow is parallel to
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Figure 4.- Convergence history for flow over a circular cylinder.

the two plates. The calculations used one of the flat plates in the xy plane at z = 0 and a

symmetry boundary condition in the xy plane at z = 5 post diameters. For this flow calculation,

a series of 29 identical 35-by-41 O-grids similar to the one described for the two-dimensional

circular cylinder were used parallel to the flat plate, with clustering close to the flat plate. The

inflow was prescribed to be a partially-developed boundary layer flow between the flat plates.
The relevant parameters used in this calculation are given in the following list.

BETA =5 KPERI =1
DTAU = 0.05 LMAX =29
ENDACC =1 SMU = 0.1
IORTHO =2 SMUIM =03
JMAX = 35 SMUPRS =0.1
KMAX =41

In Figure 5, the geometry is shown along with the velocity vectors denoting the inflow
velocity profile. The periodic boundary can be seen on the downstream side of the post.

The program output for this example is included here. The first item printed to the
output includes the values of all the variables in namelist DATAIN. Next, the convergence history
is printed every five iterations. Note that the format of the output was changed here from that in
the code in order to fit it on the page. The entry in the first column is NT, which is the current
iteration number. The second entry, RMSDQ), is the rms of the change in all four variables at all
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15 20

Figure 5.- Three-dimensional post mounted normal to a flat plate with parabolic inlet velocity
profile.

the grid points. The entry RMSCO is the rms of the right-hand side of the continuity equation.
This includes the divergence of the velocity field plus the smoothing terms. The fourth entry
is RMSDIV, which is the rms of the divergence of the velocity field. The entry DQMAX is the
maximum change of any of the variables occurring in that iteration, and the J, K, and L values
give the location of the maximum change.

Both RMSDQ and DQMAX are measures of convergence. A solution is considered
converged if these quantities decrease by three to four orders of magnitude over their original
values. In this run, RMSDQ and DQMAX have both converged over three ordersin 600 iterations.
RMSDIV is a measure of how well the velocity field satisfies the divergence-free condition. This
code can usually reduce RMSDIV to between 102 and 1073. To achieve this reduction in the
present case, it was necessary to reduce the amount of explicit smoothing added to the continuity

equation. To do this, one can just change the value of SMUARY(1) in subroutine SMOOTH. This
is initially set equal to the input variable SMUPRS. In this calculation, SMUPRS is initially set
equal to 0.5. It can be seen that as the calculations progress, RMSCO continues to converge while
RMSDIV approaches a constant. This indicates that the smoothing is dominating the continuity
equation and should be reduced. The value of SMUARY(1) was decreased by a factor of two at
time steps of 350 and 450. The net effect was to decrease the divergence further. It should be
noted that if the smoothing is decreased too much, the pressure field will start to develop kinks
and the calculation could become unstable.
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&DATAIN DISKOUT = .T., PLOT3D = .F., JMAX = 35, KMAX = 41, LMAX = 29, NTMAX
= 600, NPRNT = 600, IPRNT = 5, TIMACC = 1, ENDACC = 1, DTAU = 5.E-2, BETA = 5,,
SMU = 0.1, SMUIM = 0.3, SMUPRS = 0.5, REYNUM = 100., DXDT = 0., RL1 = 1., KPERI

= 1, ISTART = 0, IBLKDIA = 2, IMPSMO = 2, &END

NT RMSDQ  RMSCO RMSDIV DQMAX J] K L

5  0.2590E-01 0.6427E-01 0.1865E4+00 0.3160E+00 2 22 21
10 0.2643E-01 0.7407E-01  0.2856E400 -0.3742E+00 2 12 19
15  0.2471E-01 0.6486E-01 0.2394E+00 0.3503E+00 2 35 15
20  0.2211E-01 0.5559E-01 0.2212E4+00 0.4163E4+00 2 11 16
25  0.1747E-01 0.4495E-01  0.1856E4+00 0.2632E400 2 30 18
30 0.1359E-01 0.3389E-01 0.1383E400 0.1589E4+00 2 29 28
35 0.1052E-01 0.2561E-01 0.9981E-01  -0.1227E400 2 13 16
40  0.7825E-02 0.1923E-01  0.7474E-01  0.8304E-01 6 21 20
45 0.5990E-02 0.1467E-01 0.6023E-01  0.6616E-01 2 31 15
50  0.4737E-02 0.1146E-01  0.5052E-01  0.5518E-01 2 14 17
55  0.3679E-02 0.8812E-02  0.3993E-01  0.4342E-01 10 22 28
60  0.2018E-02 0.6932E-02  0.3002E-01  0.3717E-01 11 22 28
65  0.2343E-02 0.5345E-02 0.2278E-01  0.3016E-01 12 22 28
70 0.1897E-02 0.4236E-02 0.1959E-01  0.2410E-01 13 22 28
75 0.1594E-02 0.3451E-02 0.1788E-01 0.1939E-01 14 22 28
80  0.1333E-02 0.2733E-02 0.1578E-01  0.1584E-01 15 22 28
85  0.1121E-02 0.2210E-02 0.1336E-01  0.1310E-01 16 21 28
90  0.9644E-03 0.1783E-02 0.1145E-01  0.1083E-01 17 21 28
05  0.8348E-03 0.1445E-02 0.1075E-01  0.8746E-02 18 21 28
100 0.7383E-03 0.1228E-02 0.1066E-01  -0.6955E-02 7 38 28
105 0.6612E-03 0.1057E-02 0.1036E-01  -0.6311E-02 7 38 28
110 0.5952E-03 0.9153E-03 0.9791E-02  -0.5887E-02 8 38 28
115 0.5403E-03 0.8070E-03 0.9315E-02  -0.5473E-02 8 38 28
120 0.4921E-03 0.7120E-03 0.9122E-02  -0.5041E-02 8 38 28
125 0.4506E-03 0.6385E-03  0.9082E-02  -0.4583E-02 8 38 28
130 0.4153E-03 0.5804E-03  0.8995E-02  -0.4113E-02 8 38 28
135 0.3844E-03 0.5278E-03  0.8830E-02  -0.3678E-02 9 38 28
140 0.3570E-03 0.4825E-03  0.8675E-02  -0.3334E-02 9 38 28
145 0.3326E-03 0.4416E-03  0.8581E-02  -0.3005E-02 9 38 28
150 0.3114E-03 0.4064E-03 0.8525E-02  -0.2773E-02 16 1 28
155 0.2033E-03 0.3792E-03  0.8466E-02  -0.2560E-02 16 1 28
160 0.2784E-03 0.3594E-03 0.8394E-02  -0.2364E-02 17 1 28
165 0.2659E-03 0.3459E-03  0.8320E-02  -0.2197E-02 17 1 28
170 0.2554E-03 0.3369E-03  0.8280E-02  -0.2032E-02 17 1 28
175 0.2466E-03 0.3321E-03  0.8241E-02  -0.1868E-02 17 1 28
180 0.2394E-03 0.3318E-03  0.8202E-02  -0.1722E-02 18 1 28
185 0.2339E-03 0.3357E-03  0.8162E-02  -0.1584E-02 18 1 28
190 0.2302E-03 0.3435E-03  0.8125E-02  -0.1449E-02 18 1 28
195 0.2283E-03 0.3546E-03  0.8094E-02  -0.1330E-02 19 1 28
200 0.2282E-03 0.3686E-03  0.8068E-02  -0.1258E-02 22 1 28
205 0.2295E-03 0.3848E-03  0.8044E-02  -0.1246E-02 22 1 28
210 0.2319E-03 0.4019E-03  0.8024E-02  -0.1201E-02 21 1 28
215 0.2345E-03 0.4176E-03  0.8008E-02  -0.1130E-02 21 1 28
220 0.2363E-03 0.4301E-03  0.7997E-02  -0.1035E-02 21 1 28
225 0.2366E-03 0.4375E-03  0.7990E-02  -0.9277E-03 20 1 28
230. 0.2349E-03 0.4392E-03  0.7984E-02  -0.8438E-03 2 8 27
235 0.2312E-03 0.4352E-03  0.7982E-02  -0.8612E-03 2 8 27
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240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490

RMSDQ

0.2259E-03
0.2194E-03
0.2124E-03
0.2054E-03
0.1987E-03
0.1926E-03
0.1871E-03
0.1821E-03
0.1774E-03
0.1730E-03
0.1685E-03
0.1639E-03
0.1590E-03
0.1539E-03
0.1484E-03
0.1428E-03
0.1371E-03
0.1314E-03
0.1259E-03
0.1206E-03
0.1156E-03
0.1108E-03
0.2740E-03
0.1444E-03
0.1197E-03
0.1081E-03
0.1031E-03
0.9620E-04
0.8872E-04
0.8326E-04
0.7902E-04
0.7593E-04
0.7371E-04
0.7217E-04
0.7105E-04
0.7020E-04
0.6984E-04
0.7039E-04
0.7201E-04
0.7402E-04
0.7520E-04
0.7460E-04
0.1574E-03
0.9444E-04
0.7930E-04
0.6833E-04
0.6339E-04
0.6121E-04
0.5949E-04
0.5911E-04
0.5994E-04

RMSCO

0.4266E-03
0.4148E-03
0.4014E-03
0.3875E-03
0.3742E-03
0.3621E-03
0.3513E-03
0.3416E-03
0.3324E-03
0.3235E-03
0.3143E-03
0.3047E-03
0.2943E-03
0.2833E-03
0.2717E-03
0.2595E-03
0.2470E-03
0.2345E-03
0.2223E-03
0.2105E-03
0.1993E-03
0.1888E-03
0.1046E-02
0.3286E-03
0.2430E-03
0.2149E-03
0.1923E-03
0.1697E-03
0.1475E-03
0.1302E-03
0.1187E-03
0.1091E-03
0.1037E-03
0.1011E-03
0.9960E-04
0.9798E-04
0.9651E-04
0.9653E-04
0.9873E-04
0.1018E-03
0.1029E-03
0.1001E-03
0.5739E-03
0.2107E-03
0.1491E-03
0.1174E-03
0.1012E-03
0.9602E-04
0.9406E-04
0.9624E-04
0.1017E-03

RMSDIV

0.7983E-02
0.7989E-02
0.7999E-02
0.8014E-02
0.8033E-02
0.8056E-02
0.8081E-02
0.8107E-02
0.8133E-02
0.8157E-02
0.8180E-02
0.8200E-02
0.8218E-02
0.8233E-02
0.8246E-02
0.8257E-02
0.8265E-02
0.8273E-02
0.8279E-02
0.8285E-02
0.8291E-02
0.8296E-02
0.8301E-02
0.4654E-02
0.4369E-02
0.4534E-02
0.4494E-02
0.4496E-02
0.4491E-02
0.4464E-02
0.4466E-02
0.4488E-02
0.4496E-02
0.4487E-02
0.4480E-02
0.4485E-02
0.4496E-02
0.4507E-02
0.4516E-02
0.4524E-02
0.4532E-02
0.4536E-02
0.4537E-02
0.2630E-02
0.2430E-02
0.2499E-02
0.2459E-02
0.2449E-02
0.2451E-02
0.2441E-02
0.2441E-02
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DQMAX

-0.8738E-03
-0.8813E-03
-0.8814E-03
-0.8692E-03
-0.8422E-03
-0.8018E-03
-0.7584E-03
-0.7067E-03
-0.6500E-03
-0.6020E-03
-0.5649E-03
-0.5304E-03
-0.5028E-03
-0.4749E-03
-0.4461E-03
-0.4187E-03
-0.4151E-03
-0.4132E-03
-0.4127E-03
-0.4134E-03
-0.4148E-03
-0.4160E-03
0.5572E-02
-0.1646E-02
0.9543E-03
-0.1044E-02
-0.6718E-03
-0.5160E-03
-0.4101E-03
-0.3655E-03
-0.3348E-03
-0.3161E-03
-0.3094E-03
0.2999E-03
0.3009E-03
0.3018E-03
0.3027E-03
0.3030E-03
0.3025E-03
0.3230E-03
0.3490E-03
0.3544E-03
0.3060E-02
0.1044E-02
0.6952E-03
-0.5334E-03
-0.3949E-03
-0.3006E-03
0.2932E-03
0.2958E-03
0.2991E-03
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580
585

595
600

RMSDQ

0.6120E-04
0.6211E-04
0.6255E-04
0.6240E-04
0.6119E-04
0.5852E-04
0.5452E-04
0.4991E-04
0.4572E-04
0.4268E-04
0.4083E-04
0.3970E-04
0.3876E-04
0.3782E-04
0.3696E-04
0.3630E-04
0.3585E-04
0.3550E-04
0.3512E-04
0.3461E-04
0.3390E-04
0.3299E-04

RMSCO

0.1064E-03
0.1105E-03
0.1135E-03
0.1150E-03
0.1136E-03
0.1080E-03
0.9839E-04
0.8596E-04
0.7300E-04
0.6205E-04
0.5468E-04
0.5076E-04
0.4909E-04
0.4871E-04
0.4933E-04
0.5075E-04
0.5254E-04
0.5415E-04
0.5515E-04
0.5531E-04
0.5461E-04
0.5311E-04

RMSDIV

0.2452E-02
0.2457E-02
0.2453E-02
0.2448E-02
0.2448E-02
0.2449E-02
0.2449E-02
0.2448E-02
0.2449E-02
0.2452E-02
0.2455E-02
0.2458E-02
0.2459E-02
0.2460E-02
0.2460E-02
0.2461E-02
0.2462E-02
0.2463E-02
0.2464E-02
0.2464E-02
0.2465E-02
0.2465E-02
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DQMAX

0.3032E-03
0.3084E-03
0.3124E-03
0.3146E-03
0.3161E-03
0.3156E-03
0.3124E-03
0.3062E-03
0.2968E-03
0.2848E-03
0.2710E-03
0.2563E-03
0.2417E-03
0.2282E-03
0.2162E-03
0.2064E-03
0.1987E-03
0.1933E-03
0.1899E-03
0.1884E-03
0.1885E-03
0.1898E-03
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APPENDIX
THEORETICAL FOUNDATION
I. Governing Equations
Incompressible Navier-Stokes Equations

. Unsteady, three-dimensional, viscous, incompressible flow with constant density is gov-
erned by the following Navier-Stokes equations:

Ou;

6::.- - 0 (1)
Ou;  Ouwu;  Op  Omj
ot a:c,- - dz; + B:cj (2)

where t is the time, z; the Cartesian coordinates, u; the corresponding velocity components, p
the pressure, and 7;; the viscous stress tensor. All of the variables are nondimensionalized by a
reference velocity and length scale. The viscous stress tensor can be written as

Tij = 2vS;; — Ryj (3)

Here, v is the kinematic viscosity, S;; is the strain rate tensor, and R;; is the Reynolds
stresses. The strain rate tensor is defined by

1,0u; Ou;

2 Oz; + 32:,-) (4)

S,'j =

Various levels of closure models for R;; are possible. In the present code, turbulence is
simulated by an eddy viscosity model, using a constitutive equation of the following form:

1
R;; = §Rkk5ij — 214 Si; (5)

where v, is the turbulent eddy viscosity. By including the normal stress, R, in the pressure,
the variable v in equation (3) can be replaced by (v + v4).

Tij = 2(1/ + Vt)S,'J' = 2VTS,'J' (6)
In the remainder of this paper, the total viscosity, v1, will be represented simply by v. Therefore,
the incompressible Navier-Stokes equations are modified to allow variable viscosity in the present
formulation.

Pseudocompressible Formulation

The system of equations given in the preceding section is not as readily solvable by a fast
alternating-direction-implicit (ADI) scheme as the unsteady compressible Navier-Stokes equations
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which are hyperbolic. This difficulty can be alleviated by modifying the continuity equation as

follows:

13p Ou;
il 4 =0 7
5ot ¥ oz ()
By combining equations (2) and (7), the governing equations are written as one vector
equation
0 0 i/ 0
—D —(E — Ev a — Ly a_ — Uy )=
En +6:c( )+3‘y(F F)+Bz(G G,)=0 (8)
where
p
u
D= v
w
Bu Bv m Pw
u? + P _ vu _ wu
E=1" 0 | F= +p G= wv 9)
uw vw lw? +p
0 0 - 0
Eu — Tzz Fv — Tyz Gu — th
Tzy Tyy Tzy
Tez Tyz L Tz2

Coordinate Transformation

To perform calculations on three-dimensional arbitrarily shaped geometries, the follow-
ing generalized independent variables are introduced which transform the physical coordinates

into general curvilinear coordinates.

T=1
£= f(w)y) z’t)

10
77=77(z7yaz)t) ( )
(= C(z,y, Z,t)

The spatial and time derivatives become

o %0 mo X0 oo
O0z;  0Ox; 8¢ ' Oz;0n  Oz; 8¢  Ozx; 0¢;
a 0 3{,-_3_

5~ or T ot 8,

(11)
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Here the Jacobian of the transformation is defined as

& fv €
J = deth(izn’—g =N My N (12)
'Yy ¢ G
where, for example,
L% o
== 5 T dy
In actual coding, metric terms are calculated as follows :
[ 1 Yn2¢ — Y¢2q
& | = Fi | T T e
{: TaY¢ — E¢Yn
L * 1 [ veze —vez
Ty | =37 | Zezc Tz (13)
Nz TeYe — TeY¢
where
Cz 1 [ Y&%n — Un2¢
G| = Fr | TnZe T TeEy
Cz ZeYn — Tole
Te T, ¢
J'= detgm =|ve wn (14)
&mO |z 2 z
Applying the transformation to equation (8) yields
0~ 0,, = 0,5 = 8 -~
B_TD + a—f(E —E,)+ a—n(F - F,) + EZ(G ~-G,)=0 (15)
where D
D==
J
P |
P |
F = 7[ ,D+an+nyF+nzG]
A 1
G = 7 [CtD +(E+GF + CzG]
o 1
E, = 7[ szv + fva + £va]
- 1
F, = :I‘[ anv + 77va + nva]
1
Gv = ‘_]’[ CzEv + Cva + Cva]
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The contravariant velocities, U, V, and W without metric normalization are defined as

U=£t+£zu+€y'v+£zw
V=n+nu+mnv+nw (16)
W={(+6Gu+ v+ (w

The flux vectors can be rewritten as

FBU + &u(p — B)
ulU + €.p
vU +§yp
'U)U + fzp o

[BV +ndp — B)]
uV +n.p

vV +nyp (17
L wV +9.p
BW + Ci(p — B)
uW + (.p
vW + {yp

L wW + Czp

E=

=

e
Il
~le

)
I
Nl

Viscous Terms

The viscous terms are quite lengthy and therefore are given here separately.

o | ¥=t Uz o | vy tv= o | ¥zt we
=gl vetuy |+ vty |+ 50 | vt wy
Oz u Oy wy + Vs 0z w, +w,
where, for example,
Ou Ou
—_— Uy = —
gz’ ' Oy
When v is constant, the contribution of the second terms in each bracket sums up to zero when

the velocity field is divergence-free. However, since in general, v varies in space and time these
terms have to be kept. Then the viscous terms in transformed coordinates are given by

1

o

(]

[
Bt
0 ¢;

9
.aayzfij

o o o Ou v Ow
VE- (Vg + Vg, + V56 | o | + (Ceg, T 6g, T 5E)

g e g o©
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0

0 0
~ v i) 0 9, |u Ou v Ow Fz i
Fv'—"_f (Vn-(Vf-é—-f-+V7)a—n+VC-éE) » +(ﬂ=a—&+ny—az+nza—€i 3%61'
w g
8zt
9 ? ‘NP aaff /
-~ v u T 1
Go=3 VC’(V53_5+V"%+VCB_<) v +(czaf +<,,3& +C‘a§,) ;%fi (18a)
w 0 ¢
Oz 5t
The viscous terms given in equation (18a) can be simplified under special conditions. If an
orthogonal coordinate system is used, then
V& -VE =0 for i #j
Equation (18a) becomes
( 0
e
& z 2 T
Ev“‘ J (ez +£y +£z )I +(£z +£ya£‘+£za€‘) 6%61
g ¢;
\ B; 1
( 0
oD NE
& K 2 oo v w g
Fy= 500" 40" +0.%)Im— .t (nza£ g +nza£‘) 6%51. > (18b)
i) ¢
\ 0z
( 0
oD Ba‘fi
N v . L
0 ¢
\ 0z5 |
where
0 0 0O
Im = 0100
m=lo0o 10
A 0 0 01

For constant v (i.e., laminar flow), the contribution by the second term in parentheses in equation
(18b) will approach zero as the steady state is reached, where equation (1) is numerically satisfied.
Therefore, for flow with constant v in orthogonal coordinates, equation (18b) can be reduced
further as follows:
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oD

=( )(63 +€v +612)I 66 _‘)‘1D
F,=(3 =) (1 + 1% + s )Im%—g—sz (18¢)

(3 DY+ 62+ ¢ )Im%—? = 3D

II. Numerical Algorithm
Time-Advancing Algorithm

The numerical algorithm used to advance equation (15) in time is an implicit, nonit-
erative, approximately factored, finite-difference scheme described by both Beam and Warming
(ref. 5) and Briley and McDonald (ref. 6). The time-differencing used by this scheme, generally
known as the trapezoidal rule, is given by

A 8D ap\™*
Dr =Dn 4 — | — — AT? 1
+2K67) +(%2) ]+0(T) (19)
where the superscript n refers to the n** time-step. The finite-difference form of equation (15) is

5:D + 8¢(E — Ey) + 85(F — F,) + 6:(G - Gy) =0 (20)

where, for example, 8¢ is the finite difference operator for 8%. Expressions for E, F,and G

are given by equation (17); expresions for E,, F,,and G, are given by equation (18a) for a
nonorthogonal grid, by equation (18b) when an orthogonal grid is assumed, or by equation (18c)
for the case of laminar flow and an orthogonal grid. By substituting equation (20) into equation
(19) and using D = DJ, one obtains

DM 4 AT gt [y(B — B 4 6,(F — B 4 6((G = @)™
2 " ¢

_JvHDr Ar
- Jn 2

(21)
SLgrt[6(E — By)™ + 8o(F — By)" + 8¢(G — Go)"]

Solving for D™*! is nonlinear in nature since En+1 = E(D™*1) is a nonlinear function
of D™t as are F*t! and G™*l. The following linearization procedure is used. A local Taylor
expansion about u”™ yields

EmtY = E™ 4 AM(D™H - D™) + O(AT?)
ﬁ‘"'+1 — I’im + B?n(Dn+1 _ Dn) + O(ATz) (22)
Gt = G" + CH (D™ - D) + O(AT?)
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where fi, B,and C are the Jacobian matrices

=% 5.9 (23)

A= 3

SIS

The Jacobian matrices can all be represented by the following, where A4; = A, B,or C for i =
1,2,0r 3, respectively.

Ly, LB L.B L3

i l Ll Q + L]'u Lz‘u L3u

Ai = J | L Lyv Q + Lyv L3v (24)
L3 L]'w Lz'w Q + st

where
Q=L0+L1u+L2v+L3w

Lo = (&)es L1 = (&i)zy L2 = (&i)y, Lz = (&)
&=¢&, n, or ¢ for fi,- = fi, B, or C", respectively

Substituting equation (22) into equation (21) results in the governing equation in delta form

h . . )
{I +5Jm [55(,4" —T1)+ 8y(B™ = T3) + 6,(C™ —T3)] } (D! — D™

Ay [af(ﬁ, B+ 8y (F — B+ 60(G — c‘:.,)"] (25)

where X R .
P]Dn+1 — E,',‘+1, I\2Dn+1 — F:-l-l, I'3Dn+l — G:+l
h = Ar for trapezoidal scheme

= 2A71 for Euler scheme

At this point it should be noted that the notation of the form [6;(A — I')] D refers to b%(AD) -
-,_?E(I‘D) and not %D - %D.

Approximate Factorization

The solution of equation (25) would involve a formidable matrix-inversion problem. With
the use of an ADI-type scheme, the problem could be reduced to the inversion of three matrices
of small bandwidth, for which there exists efficient solution algorithms. The particular ADI form
used here is known as approximate factorization (AF) (refs. 5,6). It is difficult to implement
the AF scheme to solve equation (25) in its full matrix form. Noting that at steady-state, the
left-hand side of equation (25) approaches zero, a simplified expression for the viscous term as
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shown in equation (18c) is used on the left-hand side. To maintain the accuracy of the solution,
the entire viscous term is used on the right-hand side. Using this, the governing equation becomes

L¢L,L;(D"*' —D")=RHS (26)
where A
Lf = (I-f- "éI'Jn+15£(An - ‘)’1)]
SN )
L,=|I+ TTJ"“&,(B" - 72)] (27)

ok .
L= 14 R sgen - )|

and RHS is the right-hand side of equation (25). When second-order central differencing is
used, the solution to this problem becomes the inversion of three block-tridiagonal matrices. The
inversion problem is reduced to the three inversions

(L,)AD = RHS
(Le)AD = AD (28)
(Le)AD™! = AD.

These inversions are carried out for all interior points, and the boundary conditions
can be implemented explicitly. However, it is possible to implement the boundary conditions
implicitly, which will be discussed in a later section.

The factorization has introduced the following second-order cross-product term into the
equation.

h? [6¢ A6, B + 6, B6;C + §,C8¢A) AD + O(h*) (29)

where

. . - A
A=An—71, B=Bn—“)!2, C=Cm—‘73, h=—22Jn+l

To maintain the second-order accuracy of the scheme, the added terms must be kept smaller
than the original terms in the equations everywhere in the computational domain. This puts a
restriction on the size of the artificial compressibility parameter 8. The proper choice of 3 will be
discussed in a later section. When the approximate factorization scheme is applied, the stability
of the scheme is dependent on the use of higher-order smoothing terms. These are used to damp
out higher frequency oscillations which arise in the solution because of the use of second-order
central differencing, and will be discussed in a following section.

Numerical Dissipation / Smoothing

Higher-order smoothing terms are required to make the present algorithm stable. These
terms help to damp out the higher order oscillations in the solution that are caused by the use of
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second-order central differencing. The smoothing term is derived in conjunction with an upwind
finite-difference approximation. The fourth-order smoothing operator is given by

1
(V,Az)zu = Z—A—z(u_j-z - 4u,-_1 + 6'u,j — 4'u._,-+1 + u5+2) (30)

The second-order smoothing operator is given by

1
V.Azu =~~ﬁ—z-(uj+1 —2u; +uj_1) (31)

By including these smoothing terms, equations (26) and (27) become

L¢LyLo(D™' — D™) = RHS — €.[(VeAe)® + (VaAg)? +(V(A¢)’] D (26")
where X
At n+1 in
Lf = |I+ TJ 55(44 —71) + 6,’V£Af]
[ A AN ;
L,= {I + TJ 6,(B™ —72) + VA, (27")

r A .
Le= I+ TTJ"“&(C" —7s) + fchAc]

Here ¢; is the implicit smoothing coefficient and ¢, is the explicit smoothing coefficient.

To preserve the tridiagonal nature of the system, only second-order smoothing can be
used on the implicit side of the equation, whereas fourth-order smoothing is used on the right-
hand side. However, when the diagonal algorithm is used, the bandwidth of the system can
be increased to a pentadiagonal, since the scaler inversions are relatively cheap. This makes it
possible to use fourth-order smoothing on the implicit side of the equations as well.

When using the second-order implicit, fourth-order explicit scheme, in order to damp

out the numerical fluctuations as time advances, the smoothing parameter must satisfy

€ > 2¢, (32)
In practice, ¢; = 3¢, is often used, with e, = 0.1. It sometimes is necessary to change the amount
of smoothing applied explicitly to the pressure equation; this will be discussed in a later section.
Diagonal Algorithm

In a diagonal algorithm, a similarity transform is used to diagonalize the Jacobian ma-
trices and uncouple the set of equations. The equations can then be solved by solving scalar
tridiagonal matrices instead of solving block tridiagonal matrices. A similarity transform which

symmetrizes and diagonalizes the matrices of the compressible gas-dynamic equations has been
used by Warming et al. (ref. 16) and Turkel (ref. 17). This method was used by Pulliam and
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Chaussee (ref. 18) to produce a diagonal algorithm for the Euler equations. This can be applied
to the compressible Navier-Stokes equations to obtain a considerable savings in computing time
(ref. 19). In this section, similarity transforms for the matrices used in the method of pseudocom-
- pressibility are presented. They are used in a diagonal algorithm which results in a substantial
reduction in computer time.

Similarity transformations exist which diagonalize the Jacobian matrices.

A; = T AT (33)
where A; is a diagonal matrix whose elements are the eigenvalues of the Jacobian matrices. It is

given by

Q 0 0 0
10 Q o0 0
Jlo o @Q+Cc o
00 0 @Q-cC

where C is the pseudospeed of sound, which is given by
C = /(@ — Lo)? + (L% + I + L)

The T; matrix is composed of the eigenvectors of the Jacobian matrix. For i=1 (£-sweep), the
first two eigenvectors are given by

-

A= (34)

- 0 - o 0 W
Xi= |2, X= (3" 35
1 y( ’ 2 yn ( )
- Z( B L. 21’ -
For i=2 (n-sweep) they are
- 0 T ~ 0 -
= z = z
Xi= |35, Xa=|3¢ 36
1 y€ ] 2 y( ( )
L 25 4 L 2( 4
For i=3 ({-sweep) they are
- 0 ol 0 -
= z = z
X,=|%, X,=]7¢ 37
1 T ’ 2 yf ( )
| z, [ z¢

The terms in these eigenvectors have been normalized to simplify the inverse matrix with, for

example,
_ :cfx/j
(L3 + L3+ L3)'/*

T¢

2o VJ
(L% + L% + 13/

Z-,7=
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The eigenvectors associated with the last two eigenvalues are given by

C(C-Q)
2o v+ L(C-Q)
: v+ L (C - Q)
w+ L3(C - Q)
(38)
C(C+Q)
Z.- |~ D(C+Q)
T lv-L(C+Q)
w—Ls(C+Q)

where

Q L Lz’v + f)aw
Q*+8
L

VL? + L% + L2

The columns of the T; matrix are formed with the eigenvectors

i o)
| I

- — -

T;=[X, X X5 X

The elements of the inverse of the eigenvector matrix are given by

- 1 . - - - - -
(T; ])11 = E[-’B(;“(Lz‘w — L3v) + yg,-+1(L3'u. — Lw)
+ ¢, (Lo — Lau))]

- 1 = - - - -
(T )2 = E[xe;,L,(st — Law) + §¢; . (Lnw — L3u)

+ 25i+2(‘E2u - Elv)]

ll""‘

(T )3 =

2

%)
Q"‘Q

(T = =5

N

(T e = E[fem(izﬂ + Qv) — G,y (L3B + Qu))

(T a1 = Z3ldesa (B + Q) = Zepa(Eaf + Qo)

_ L,(Q+C)
(T )s2 = ;25—
_ Li(Q-0)
(T a2 = 1—26'2——
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(T )12 = 2Bt (Esf + Qu) = Fopu (B8 + Qu)

(T s = Z5lEeusa(Baf + Q) — 3euya(Esf + Gu)

(T M)ss = &(_%;C_)
(T_—-l) — I;z(Q- — Cw')
i M= o m (39)

(T e = %[ﬂfaﬁ(faﬂ + Qu) — ¢,y (L28 + Q)]

(T )2a = 512‘[’36.-+2(E2ﬂ +Qv) ~ Je.y (L18 + Qu)]

_ Ly (Q + ©)
(T )sa = —3—2'(:,2—

- Ly(Q - )
(Ti 1)44 == 26'2

The determinant of T; is given by
det(T;) = 2C°

which remains bounded independent of the geometry. For more detail on the derivation of these
matrices, see ref. 7.

The implementation of the diagonal scheme involves replacing the Jacobian matrices in
the implicit operators with the product of the similarity transform matrices and the diagonal
matrix as given in equation (33). The identity matrix in the implicit operators is replaced by the
product of the similarity-transform matrix and its inverse. A modification is made to the implicit
viscous terms by replacing the I, matrix with an identity matrix so that the transformation
matrices may also be factored out of these terms. This modification implicitly adds an additional
viscous dissipation term to the pressure. The transformation matrices are now factored out of
the implicit operators to give

A . -

Le =TI+ _2_TJ6£(A€ — )T
At . -1

Ly =Tyl + _Z*an(An — 12)IT, (40)
AT

Lo=T[I+ 5 T8(A¢ — W)T;
where the implicit viscous terms are now given by
. v
¥i = V& Vil

Since the transformation matrices are dependent on the metric quantities, factoring
them outside the difference operators introduces an error. No modification has been made to
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the right-hand side of the equation and therefore these linearization errors will only effect the
convergence path toward the solution, not the steady-state solution.

The implementation of this algorithm instead of the block algorithm will result in a
substantial reduction in computational time per iteration because of the decrease in the number
of operations performed. Additionally, considerably less memory is required to store the elements
on the left-hand side. This additional memory was used to further vectorize the existing code
as follows. Since the solution of a tridiagonal block or scalar matrix is recursive, it cannot be
vectorized for loops which use the current sweep direction as the inner do-loop index. However, if
a large number of these matrices are passed into the inversion routines at once, then vectorization
can take place in the ‘nonsweep’ direction.

Boundary Conditions

An important part of any computer code is the proper implementation of boundary
conditions. The code must be capable of handling the several different types of boundaries
encountered in numerical simulations which include solid-surface, inflow and outflow, and far-

field boundaries.

Solid Surface

At a solid surface boundary, the usual no-slip condition is applied. In general, the grid
point adjacent to the surface will be sufficiently close so that constant pressure normal to the
surface in the viscous boundary layer can be assumed. For a { = constant surface, this can be

expressed as
Bp)
== =0 41
(ac L=1 ( )

This boundary condition can be implemented either explicitly or implicitly. However, the implicit
implementation will enhance the stability of the code. This can be done during the { sweep by
including the following in the matrix to be inverted.

IADj,k,l + EADJ"k,z =f (42)
where
-1 0 00 PL=2 — PL=1
P 0 0 0 O f _ 0
0 0 0 O 0
0 0 0 O 0

Inflow, Outflow and Far-field Conditions

The inflow and outflow boundary conditions for an internal flow problem and the far-
field boundary conditions for an external flow problem can be handled in much the same way.
The incoming flow for both problems can be set to some appropriate constant as dictated by
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the problem. For example, at the inlet to a pipe, the pressure can be set to a constant and the
velocity profile can be specified. The conditions at the downstream however, are the most difficult
to provide. Simple upwind extrapolation is not well-posed. The best convergence rate is obtained
if global mass is conserved. So to ensure the best results, the velocities and pressure are first
updated using a second-order upwind extrapolation. For an exit at L = LMAX, this is

n+1 (Azz) _ nntl

= lmaz—1 \ Az, lmaz—2
Qimaez = A (43)
a2rn 1
AZ],

where
Az = Zlmaz — Zlmaz—1

Azy; = Zlmaz — Zlmaz—2

Then these extrapolated velocities are integrated over the exit boundary to obtain the outlet mass
flux

Tout = V. da. (44)

ezit ,
Then the velocity components are weighted by the mass flux ratio to conserve global mass
f}n+1 — &f}ﬁ ( 45)
Mout

If nothing further is done to update the boundary pressure, this procedure can lead to discon-
tinuities in the pressure because momentum is not being conserved. A method of weighting
the pressure by a momentum correction was presented by Chang et al (ref. 13). They use the
following relation to obtain a pressure which corresponds to the mass-weighted velocities

1
¢

pn+1 — pﬁ. _

atl a v dw\ " w\*
(W)™ — (wW)*] + —=(V¢- V) || 5= -\ 7 {46)
z o¢ a¢
where W is the contravariant velocity. In obtaining this formula, it has been assumed that
the streamlines near the exit plane are nearly straight. Any appreciable deviation will cause a
discontinuity in the pressure and may lead to an instability. To avoid this, a momentum-weighted

pressure was used. This was obtained by integrating the momentum-corrected pressure p"*! and
the extrapolated pressure p” across the exit
n+1l _ n+1 g~
;7 = / ) p" T da
exrt: (47)

L= / pda.
ezxit

The final outlet pressure is then taken to be

. (I .
pmtl = ’},-, p" (48)
P




Using these downstream boundary conditions, global conservation of mass and momentum are
ensured and the scheme will not introduce instabilities into the flow field.

III. PSEUDOCOMPRESSIBILITY

In an incompressible flow, a disturbance in the pressure causes waves which travel with
infinite speed. Introduction of pseudocompressibility causes waves of finite speed, where the
magnitude of the speed depends upon the pseudocompressibility constant 8. In a true incom-
pressible flow, the pressure field is affected instantaneously by a disturbance in the flow, but
with pseudocompressibility, there will be a time lag between the flow disturbance and its effect
on the pressure field. In viscous flows, the behavior of the boundary layer is very sensitive to
the streamwise pressure gradient, especially when the boundary layer is separated. If separation
is present, a pressure wave traveling with finite speed will cause a change in the local pressure
gradient which will affect the location of the flow separation. This change in separated flow will
feed back to the pressure field, possibly preventing convergence to a steady state.

Wave-Vorticity Interactions

To understand the physical phenomenon of wave propagation and its interaction with
viscous effect, a simplified one-dimensional form of the governing equation is anlyzed.

18p  Ou

Ea-i-'a—m—o (49)
Ou Bu? Op
o T T T (50)

where 7, represents wall shear stress. The pseudospeed of sound for this system of equations is

given by
c=+yu2+p

and the pseudo-Mach number can be defined

_u u (51)
c JVu+p

which is always less than one for any 8 > 0. This equations shows that the present formulation

will not generate shocks and also that the solution eventually approaches that of incompressible

flows (see ref. 4 for more detail). In three-dimensional applications, u can be considered to be

the average velocity in the primary flow direction.

To investigate the coupling effect between the pressure wave and vorticity, consider a
channel of length L. The time it takes an upstream propagating wave to travel the distance of
the computational domain of length L is given by the dimensionless time scale,

Ty = L/Zres (52)

c—1u
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The spreading of the viscous effect can be estimated by the boundary-layer growth rate. Therefore,
for laminar flows, the dimensionless time scale for the viscous effect to spread over a thickness, §,
is approximately given by

Re 62

T5 ~ —
4 zref

(53)

To recover the incompressible phenomena, the physics requires that the pressure wave propagate
much faster than the spreading of the viscous effect, namely,

Ty << T;s (54)

From this physical reasoning, a general criterion for the lower bound of 3 is obtained given as

follows:
B>> |14 o (Fret SEA 1 (55)
Re \ z5 Tref

where x5 and zf are the characteristic lengths that the vorticity and the pressure waves have
to propagate during a given time span. For a channel flow simulation, 1 is equal to the length
of the channel and ;s is half the channel width. The computational experiments showed this
dependency of the pseudocompressibility parameter on the Reynolds number, as well as on the
characteristic lengths of the geometry (see ref. 8).

For the near field in external flow simulations where pressure waves propagate out to
infinity, the range of acceptable 3 is less restrictive. The pressure buildup in the near-field region
is usually temporary, even if 8 is not optimum. However, for internal flows, local pressure buildup
can be serious when f is not properly chosen. .

The total number of iterations required for the wave to travel downstream and back
upstream, a total distance of 2L, must be considered. Recalling that the downstream or upstream
travelling waves propagate with speed (¢ + u) or (c — u) respectively, the total time required for
one round trip, 71, can be written as

ui+p
s

If a constant time step is used throughout the computation, the total number of iterations, Ny,
for one round trip is

oL (56a)

n =

71

Ny = —
1= AT

(56b)

where At is the increment of dimensionless time. For convergence, enough computing time, ,
has to elapse to permit the wave to make at least one round trip.
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This analysis provides a lower bound for the choice of 8. For the upper bound of 3, the
error introduced by the approximate factorization will be considered. Recalling equation (29),
the form of the error is

E = (%’Uw)z [55(,&" ~T1)6,(B™ -T) + ] (57)

This term must be kept smaller than the original terms in the equation. If only the terms which
contain f are included, this restriction can be expressed as

A N i
ST AR AT < B AT, i
or A
S5-I A7 <1 (58)

Recalling the expression for fi:‘ given by equation (24), the terms contain 3 give the following
Ar 0¢;
AT g5, (25
86, (azi) <1 (59)

The term to the right of 3 in this inequality is essentially the change in ZIT; in either the £,7n,0r {
direction. An estimate of the order of magnitude of this term for the grids generally used is given

by
o [55,. (gi’)] ~ 2 (60)

O(BAT) < 1 (61)

which puts the restriction on 3

For most problems, the restrictions for 3 given by equations (56) and (61) are satisfied with a
value for 3 in the range from 1 to 10.

Effects of Smoothing on Accuracy

The explicit smoothing has a large effect on the convergence and accuracy of the pseudo-
compressibility method. In particular, the explicit smoothing on the pressure can affect whether
the solution converges to an incompressible flow field. Chang and Kwak (ref. 4) showed that
the pseudopressure waves decay exponentially with time and vanish as the solution converges;
thus the change in pressure with time approaches zero. When there is no explicit smoothing
added to the equation, the divergence of the velocity field identically approaches zero. However,
when explicit smoothing is included, as the change in pressure approaches zero, the divergence of
velocity approaches

au,; 6,(1)
a:l:,' - _,BAT

[(VehAe) +(Vahg) +(VeA) ] p (62)
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where ¢€.(1) is the explicit smoothing parameter for the pressure. If ¢, is scaled by h, i.e., ¢, =
Arte,, equation (62) becomes independent of time step. This term can deteriorate the conservation
of mass depending on the magnitude of 8 and the local pressure gradient. When the pressure
gradients become substantial, as in the case when a region of separation is present, the smoothing
term does not approach zero so the divergence of the velocity field is contaminated. In this
situation, mesh refinement usually does not help in reducing the magnitude of this term. To
alleviate this problem, it may become necessary to decrease the smoothing coeflicient in the
continuity equation after the solution is almost converged.
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