362 research outputs found

    Star-forming Clumps in Local Luminous Infrared Galaxies

    Get PDF
    We present HST narrowband near-infrared imaging of Paα and Paβ emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900 pc and star formation rates (SFRs) of ~1 × 10⁻³ to 10 M⊙ yr⁻¹, with median values for extranuclear clumps of 170 pc and 0.03 M⊙ yr⁻¹. The detected star-forming clumps are young, with a median stellar age of 8.7 Myr, and have a median stellar mass of 5 × 10⁵ M ⊙. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z = 1–3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201

    Final results of Borexino Phase-I on low energy solar neutrino spectroscopy

    Full text link
    Borexino has been running since May 2007 at the LNGS with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the 7Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO neutrinos. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the 7 Be neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of phase-I results in the context of the neutrino oscillation physics and solar models are presented

    New limits on heavy sterile neutrino mixing in 8B{^{8}\rm{B}}-decay obtained with the Borexino detector

    Full text link
    If heavy neutrinos with mass mνHm_{\nu_{H}}\geq2me m_e are produced in the Sun via the decay 8B8Be+e++νH{^8\rm{B}} \rightarrow {^8\rm{Be}} + e^+ + \nu_H in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light neutrino νHνL+e++e\nu_{H}\rightarrow\nu_{L}+e^++e^-. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV mνH\leq m_{\nu_{H}} \le 14 MeV to be UeH2(1034×106)|U_{eH}|^2\leq (10^{-3}-4\times10^{-6}) respectively. These are tighter limits on the mixing parameters than obtained in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
    corecore