8,410 research outputs found

    Dynamics of thick discs around Schwarzschild-de Sitter black holes

    Get PDF
    We consider the effects of a cosmological constant on the dynamics of constant angular momentum discs orbiting Schwarzschild-de Sitter black holes. The motivation behind this study is to investigate whether the presence of a radial force contrasting the black hole's gravitational attraction can influence the occurrence of the runaway instability, a robust feature of the dynamics of constant angular momentum tori in Schwarzschild and Kerr spacetimes. In addition to the inner cusp near the black hole horizon through which matter can accrete onto the black hole, in fact, a positive cosmological constant introduces also an outer cusp through which matter can leave the torus without accreting onto the black hole. To assess the impact of this outflow on the development of the instability we have performed time-dependent and axisymmetric hydrodynamical simulations of equilibrium initial configurations in a sequence of background spacetimes of Schwarzschild-de Sitter black holes with increasing masses. The simulations have been performed with an unrealistic value for the cosmological constant which, however, yields sufficiently small discs to be resolved accurately on numerical grids and thus provides a first qualitative picture of the dynamics. The calculations, carried out for a wide range of initial conditions, show that the mass-loss from the outer cusp can have a considerable impact on the instability, with the latter being rapidly suppressed if the outflow is large enough.Comment: 12 pages; A&A, in pres

    QPOs: Einstein's gravity non-linear resonances

    Full text link
    There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.Comment: Proceeding of the Einstein's Legacy, Munich 200

    Maximal Acceleration Is Nonrotating

    Get PDF
    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry axis, and in a slowly rotating gravitational field, including the weak-field limit, where the SCAM is shown to be counter-rotating relative to infinity. These formulas are evaluated in particular detail for the Kerr-Newman metric. Various other congruences are also defined, such as a Stationary Congruence Rotating at Minimum (SCRAM), and Stationary Worldlines Accelerating Radially Maximally (SWARM), both of which coincide with a SCAM on an equatorial plane of reflection symmetry. Applications are also made to the gravitational fields of maximally rotating stars, the Sun, and the Solar System.Comment: 64 pages, no figures, LaTeX, Sections 10 and 11 added with applications to maximally rotating stellar models of Cook, Shapiro, and Teukolsky and to the Sun and Solar System with recent data from Pijpers that the Sun has angular momentum 1.80 x 10^{75} = 0.216 M^2 = 47 hectares = 116 acres (with 0.8% uncertainty) and quadrupole moment (2.18 x 10^{-7})MR^2 = 1.60 x 10^{14} m^3 = 3.7 x 10^{117} (with 3% uncertaity), accepted Feb. 27 for Classical and Quantum Gravit

    Color coherent phenomena on nuclei and the QCD evolution equation

    Get PDF
    We review the phenomenon of color coherence in quantum chromodynamics (QCD), its implications for hard and soft processes with nuclei, and its experimental manifestations. The relation of factorization theorems in QCD with color coherence phenomena in deep inelastic scattering (DIS) and color coherence phenomena in hard exclusive processes is emphasized. Analyzing numerically the QCD evolution equation for conventional and skewed parton densities in nuclei, we study the onset of generalized color transparency and nuclear shadowing of the sea quark and gluon distributions in nuclei as well as related phenomena. Such novel results as the dependence of the effective coherence length on Q2Q^2 and general trends of the QCD evolution are discussed. The limits of the applicability of the QCD evolution equation at small Bjorken xx are estimated by comparing the inelastic quark-antiquark- and two gluon-nucleon (nucleus) cross sections, calculated within the DGLAP approximation, with the dynamical boundaries, which follow from the unitarity of the SS matrix for purely QCD interactions. We also demonstrate that principles of color coherence play an important role in the processes of soft diffraction off nuclei.Comment: 58 pages, 19 figures, Revtex. Minor editor's changes, final version published in J.Phys. G27 (2001) R23-6

    Nuclear Shadowing and the Optics of Hadronic Fluctuations

    Get PDF
    A coordinate space description of shadowing in deep-inelastic lepton-nucleus scattering is presented. The picture in the laboratory frame is that of quark-gluon fluctuations of the high-energy virtual photon, propagating coherently over large light-cone distances in the nuclear medium. We discuss the detailed dependence of the coherence effects on the invariant mass of the fluctuation. We comment on the issue of possible saturation in the shadowing effects at very small Bjorken-xx.Comment: 11 pages, 5 figure

    Two-dimensional models of hydrodynamical accretion flows into black holes

    Get PDF
    We present a systematic numerical study of two-dimensional axisymmetric accretion flows around black holes. The flows have no radiative cooling and are treated in the framework of the hydrodynamical approximation. The models calculated in this study cover the large range of the relevant parameter space. There are four types of flows, determined by the values of the viscosity parameter α\alpha and the adiabatic index γ\gamma: convective flows, large-scale circulations, pure inflows and bipolar outflows. Thermal conduction introduces significant changes to the solutions, but does not create a new flow type. Convective accretion flows and flows with large-scale circulations have significant outward-directed energy fluxes, which have important implications for the spectra and luminosities of accreting black holes.Comment: 43 pages, 23 figures, submitted to Ap

    Using a neural network approach for muon reconstruction and triggering

    Full text link
    The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to take precise decisions in a few nano-seconds. We present a study which used an artificial neural network triggering algorithm and compared it to the performance of a dedicated electronic muon triggering system. Relatively simple architecture was used to solve a complicated inverse problem. A comparison with a realistic example of the ATLAS first level trigger simulation was in favour of the neural network. A similar architecture trained after the simulation of the electronics first trigger stage showed a further background rejection.Comment: A talk given at ACAT03, KEK, Japan, November 2003. Submitted to Nuclear Instruments and Methods in Physics Research, Section

    On the twin paradox in static spacetimes: I. Schwarzschild metric

    Get PDF
    Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.Comment: 18 pages, paper accepted for publication in Gen. Rel. Gra

    General Relativistic Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell

    Get PDF
    We show that, at first order in the angular velocity, the general relativistic description of Rossby-Haurwitz waves (the analogues of r-waves on a thin shell) can be obtained from the corresponding Newtonian one after a coordinate transformation. As an application, we show that the results recently obtained by Rezzolla and Yoshida (2001) in the analysis of Newtonian Rossby-Haurwitz waves of a slowly and differentially rotating, fluid shell apply also in General Relativity, at first order in the angular velocity.Comment: 4 pages. Comment to Class. Quantum Grav. 18(2001)L8

    Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    Get PDF
    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp -> p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J/psi production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons ("diffraction pattern"). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.Comment: 26 pages, 17 figures, uses revtex
    • 

    corecore