7,314 research outputs found

    An upwind-differencing scheme for the incompressible Navier-Stokes equations

    Get PDF
    The steady state incompressible Navier-Stokes equations in 2-D are solved numerically using the artificial compressibility formulation. The convective terms are upwind-differenced using a flux difference split approach that has uniformly high accuracy throughout the interior grid points. The viscous fluxes are differenced using second order accurate central differences. The numerical system of equations is solved using an implicit line relaxation scheme. Although the current study is limited to steady state problems, it is shown that this entire formulation can be used for solving unsteady problems. Characteristic boundary conditions are formulated and used in the solution procedure. The overall scheme is capable of being run at extremely large pseudotime steps, leading to fast convergence. Three test cases are presented to demonstrate the accuracy and robustness of the code. These are the flow in a square-driven cavity, flow over a backward facing step, and flow around a 2-D circular cylinder

    Three-dimensional incompressible Navier-Stokes computations of internal flows

    Get PDF
    Several incompressible Navier-Stokes solution methods for obtaining steady and unsteady solutions are discussed. Special attention is given to internal flows which involve distinctly different features from external flows. The characterisitcs of the flow solvers employing the method of pseudocompressibility and a fractional step method are briefly described. This discussion is limited to a primitive variable formulation in generalized curvilinear coordinates. Computed results include simple test cases and internal flow in the Space Shuttle main engine hot-gas manifold

    Potential applications of computational fluid dynamics to biofluid analysis

    Get PDF
    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis

    Efficient simulation of incompressible viscous flow over multi-element airfoils

    Get PDF
    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration

    INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    Get PDF
    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix

    Numerical Simulation of Flow Through an Artificial Heart

    Get PDF
    A solution procedure was developed that solves the unsteady, incompressible Navier-Stokes equations, and was used to numerically simulate viscous incompressible flow through a model of the Pennsylvania State artificial heart. The solution algorithm is based on the artificial compressibility method, and uses flux-difference splitting to upwind the convective terms; a line-relaxation scheme is used to solve the equations. The time-accuracy of the method is obtained by iteratively solving the equations at each physical time step. The artificial heart geometry involves a piston-type action with a moving solid wall. A single H-grid is fit inside the heart chamber. The grid is continuously compressed and expanded with a constant number of grid points to accommodate the moving piston. The computational domain ends at the valve openings where nonreflective boundary conditions based on the method of characteristics are applied. Although a number of simplifing assumptions were made regarding the geometry, the computational results agreed reasonably well with an experimental picture. The computer time requirements for this flow simulation, however, are quite extensive. Computational study of this type of geometry would benefit greatly from improvements in computer hardware speed and algorithm efficiency enhancements

    Simulation of blood flow through an artificial heart

    Get PDF
    A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear

    An Empirical Study of 'Fringe Benefits' and Performance of the Korean Firms

    Get PDF
    This paper examines the effects of fringe benefits in the compensation package on performance of the Korean firms. Theoretically, fringe benefits have two implications in relation to employees: they are effective instruments that provide incentives; at the same time, some fringe benefits, especially the power-related benefits, are often used for exploitation of self-interests. Using a six-year panel data of the Korean manufacturing firms, we do a regression analysis and identify the links between fringe benefits and performance of the Korean firms. Our results suggest that, in general, these types of compensations do not promote good performance of firms. The results also imply that perhaps some designs in pay for performance in Korea are not efficient.published_or_final_versio

    Paper Session III-A - Dual-Use Applications of a Computational Fluid Dynamics Code for Viscous Incompressible Flow

    Get PDF
    An efficient incompressible flow analysis code, INS3D, has been developed at NASA Ames Research Center and applied successfully to numerous aerospace applications. The INS3D code has also been applied to non-aerospace applications, such as biofluid problems, with great success. This paper presents a computational flow simulation capability originally developed for liquid rocket engine analysis and subsequently applied to analyze the left ventricular assist device being developed jointly by NASA Johnson Space Center and the Baylor College of Medicine
    • …
    corecore