research

An upwind-differencing scheme for the incompressible Navier-Stokes equations

Abstract

The steady state incompressible Navier-Stokes equations in 2-D are solved numerically using the artificial compressibility formulation. The convective terms are upwind-differenced using a flux difference split approach that has uniformly high accuracy throughout the interior grid points. The viscous fluxes are differenced using second order accurate central differences. The numerical system of equations is solved using an implicit line relaxation scheme. Although the current study is limited to steady state problems, it is shown that this entire formulation can be used for solving unsteady problems. Characteristic boundary conditions are formulated and used in the solution procedure. The overall scheme is capable of being run at extremely large pseudotime steps, leading to fast convergence. Three test cases are presented to demonstrate the accuracy and robustness of the code. These are the flow in a square-driven cavity, flow over a backward facing step, and flow around a 2-D circular cylinder

    Similar works