458 research outputs found

    Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System

    Get PDF
    In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein–mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules

    Venous thromboembolism after inpatient surgery in administrative data vs NSQIP: a multi-institutional study

    Get PDF
    Previous studies have documented significant differences between administrative data and registry data in the determination of postoperative venous thromboembolism (VTE). The goal of this study was to characterize the discordance between administrative and registry data in the determination of postoperative VTE.This study was performed using data from the American College of Surgeons NSQIP merged with administrative data from 8 different hospitals (5 different medical centers) between 2013 and 2015. Occurrences of postoperative vein thrombosis (VT) and pulmonary embolism (PE) as ascertained by administrative data and NSQIP data were compared. In each situation where the 2 sources disagreed (discordance), a 2-clinician chart review was performed to characterize the reasons for discordance.The cohort used for analysis included 43,336 patients, of which 53.3% were female and the mean age was 59.5 years. Concordance between administrative and NSQIP data was worse for VT (κ 0.57; 95% CI 0.51 to 0.62) than for PE (κ 0.83; 95% CI 0.78 to 0.89). A total of 136 cases of discordance were noted in the assessment of VT; of these, 50 (37%) were explained by differences in the criteria used by administrative vs NSQIP systems. In the assessment of postoperative PE, administrative data had a higher accuracy than NSQIP data (odds ratio for accuracy 2.86; 95% CI 1.11 to 7.14) when compared with the 2-clinician chart review.This study identifies significant problems in ability of both NSQIP and administrative data to assess postoperative VT/PE. Administrative data functioned more accurately than NSQIP data in the identification of postoperative PE. The mechanisms used to translate VTE measurement into quality improvement should be standardized and improved

    HDL Proteome in Hemodialysis Patients: A Quantitative Nanoflow Liquid Chromatography-Tandem Mass Spectrometry Approach

    Get PDF
    Aside from a decrease in the high-density lipoprotein (HDL) cholesterol levels, qualitative abnormalities of HDL can contribute to an increase in cardiovascular (CV) risk in end-stage renal disease (ESRD) patients undergoing chronic hemodialysis (HD). Dysfunctional HDL leads to an alteration of reverse cholesterol transport and the antioxidant and anti-inflammatory properties of HDL. In this study, a quantitative proteomics approach, based on iTRAQ labeling and nanoflow liquid chromatography mass spectrometry analysis, was used to generate detailed data on HDL-associated proteins. The HDL composition was compared between seven chronic HD patients and a pool of seven healthy controls. To confirm the proteomics results, specific biochemical assays were then performed in triplicate in the 14 samples as well as 46 sex-matched independent chronic HD patients and healthy volunteers. Of the 122 proteins identified in the HDL fraction, 40 were differentially expressed between the healthy volunteers and the HD patients. These proteins are involved in many HDL functions, including lipid metabolism, the acute inflammatory response, complement activation, the regulation of lipoprotein oxidation, and metal cation homeostasis. Among the identified proteins, apolipoprotein C-II and apolipoprotein C-III were significantly increased in the HDL fraction of HD patients whereas serotransferrin was decreased. In this study, we identified new markers of potential relevance to the pathways linked to HDL dysfunction in HD. Proteomic analysis of the HDL fraction provides an efficient method to identify new and uncharacterized candidate biomarkers of CV risk in HD patients

    Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities

    Get PDF
    Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.This work was supported by the Spanish Government (Grants MAT2012-37584, CGL2012-35992 and CGL2015-70642-R), the Junta de Andalucía through Proyecto de excelencia RNM-3493 and Project P11-RNM-7550, the Research Groups BIO 103 and RNM-179, and the University of Granada (Unidad Científica de Excelencia UCE-PP2016-05). Additional funds were provided by the Molecular Foundry (Lawrence Berkeley National Laboratory, LBNL, University of California, Berkeley, CA) for a research stay of M.S. (project #1451; User Agreement No. NPUSR009206)
    corecore