366 research outputs found

    Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes.

    Get PDF
    Synucleinopathies such as Parkinson's disease, multiple system atrophy and dementia with Lewy bodies are characterized by deposition of aggregated α-synuclein. Recent findings indicate that pathological oligomers rather than fibrillar aggregates may represent the main toxic protein species. It has been shown that α-synuclein oligomers can increase the conductance of lipid bilayers and, in cell-culture, lead to calcium dyshomeostasis and cell death. In this study, employing a setup for single-channel electrophysiology, we found that addition of iron-induced α-synuclein oligomers resulted in quantized and stepwise increases in bilayer conductance indicating insertion of distinct transmembrane pores. These pores switched between open and closed states depending on clamped voltage revealing a single-pore conductance comparable to that of bacterial porins. Pore conductance was dependent on transmembrane potential and the available cation. The pores stably inserted into the bilayer and could not be removed by buffer exchange. Pore formation could be inhibited by co-incubation with the aggregation inhibitor baicalein. Our findings indicate that iron-induced α-synuclein oligomers can form a uniform and distinct pore species with characteristic electrophysiological properties. Pore formation could be a critical event in the pathogenesis of synucleinopathies and provide a novel structural target for disease-modifying therapy

    Two different binding modes of α-synuclein to lipid vesicles depending on its aggregation state

    Get PDF
    Aggregation of α-synuclein is involved in the pathogenesis of Parkinson's disease (PD). Studies of in vitro aggregation of α-synuclein are rendered complex because of the formation of a heterogeneous population of oligomers. With the use of confocal single-molecule fluorescence techniques, we demonstrate that small aggregates (oligomers) of α-synuclein formed from unbound monomeric species in the presence of organic solvent (DMSO) and iron (Fe 3+) ions have a high affinity to bind to model membranes, regardless of the lipid-composition or membrane curvature. This binding mode contrasts with the well-established membrane binding of α-synuclein monomers, which is accompanied with α-helix formation and requires membranes with high curvature, defects in the lipid packing, and/or negatively charged lipids. Additionally, we demonstrate that membrane-bound α-synuclein monomers are protected from aggregation. Finally, we identified compounds that potently dissolved vesicle-bound α-synuclein oligomers into monomers, leaving the lipid vesicles intact. As it is commonly believed that formation of oligomers is related PD progression, such compounds may provide a promising strategy for the design of novel therapeutic drugs in Parkinson's disease.peer-reviewe

    Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo

    Get PDF
    In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function

    Interplay Between Risk Perception, Behavior, and COVID-19 Spread

    Get PDF
    Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for controlling COVID-19. They are complemented by voluntary health-protective behavior, building a complex interplay between risk perception, behavior, and disease spread. We studied how voluntary health-protective behavior and vaccination willingness impact the long-term dynamics. We analyzed how different levels of mandatory NPIs determine how individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-19 incidence will surge, implying high morbidity and mortality before individuals react; if they are too strong, one expects a rebound wave once restrictions are lifted, challenging the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time and room to adapt their level of caution, mitigating disease spread effectively. When complemented with high vaccination rates, this also offers a robust way to limit the impacts of the Omicron variant of concern. Altogether, our work highlights the importance of appropriate mandatory NPIs to maximise the impact of individual voluntary actions in pandemic control.BMBF, 01KX2021, Nationales Forschungsnetzwerk der Universitätsmedizin zu Covid-19EC/H2020/101003480/EU/COVID-19-Outbreak Response combining E-health, Serolomics, Modelling, Artificial Intelligence and Implementation Research/CORESM

    Distinct fibroblast lineages determine dermal architecture in skin development and repair

    Get PDF
    This work was funded by the Wellcome Trust (F.M.W., A.C.F.-S.), the Medical Research Council (MRC) (F.M.W., A.C.F.-S.) and the European Union FP7 programme: TUMIC (F.M.W.), HEALING (F.M.W.) and EpigeneSys (A.C.F.-S.). B.M.L. is the recipient of a FEBS long-term fellowship. K.K. is the recipient of a MRC PhD Studentship. The authors acknowledge financial support from the Department of Health via theNational Institute forHealth Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London (KCL) and King’s College Hospital NHS Foundation Trust. Input from M. Mastrogiannaki, A. Reimer and B. Trappmann is gratefully acknowledged

    Development of Plasmodium falciparum liver-stages in hepatocytes derived from human fetal liver organoid cultures

    Get PDF
    Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control

    Chromatin Remodeling in Patient-Derived Colorectal Cancer Models

    Get PDF
    Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome
    • …
    corecore