75 research outputs found

    Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress

    Get PDF
    Abstract: Presoaking maize (Zea mays) seeds in salicylic acid (SA) reduces damage caused by cadmium. In the present work the possible role of phytochelatins (PCs) in SA-mediated protection against Cd toxicity was investigated. Seeds were presoaked in 0.5 mM SA, and seedlings were grown in hydroponic solution containing 0, 0.01, 0.015, or 0.025 mM Cd. Treatment with Cd increased the PC levels in maize roots, but only slight changes were observed in the leaves. Long-term exposure to Cd decreased the phytochelatin synthase (PCS) activity in the roots and led to an increase in PCS and glutathione reductase (GR) activities in maize leaves. Although presoaking seeds in SA solution before exposure to Cd may reduce the level of heavy metal injury and has an effect on the composition of individual PCs, this protection is not directly connected with the altered regulation of PCs

    UV-B radiation modifies the acclimation processes to drought or cadmium in wheat

    Get PDF
    Under natural conditions plants are often subjected to multiple stress factors. The main aim of the present work was to reveal how UV-B radiation affects acclimation to other abiotic stressors. Wheat seedlings grown under normal light conditions or normal light supplemented with UV-B radiation were exposed to drought or Cd stress and were screened for changes in the contents of salicylic acid and its putative precursor ortho-hydroxy-cinnamic acid, and in the activity of the key synthesis enzyme, phenylalanine ammonia lyase. Certain other protective mechanisms, such as antioxidant enzyme activities and polyamines, were also investigated. PEG treatment under UV-B radiation did not cause wilting, but resulted in more pronounced salicylic acid accumulation, which may provide protection against drought stress in wheat plants. In contrast, the high level of salicylic acid accumulation in Cd-treated plants was not further enhanced by UV-B stress, but resulted in pronounced oxidative stress and the activation of antioxidant systems and polyamine synthesis. Changes in the levels of phenolic compounds are accompanied by increased phenylalanine ammonia lyase activity in the roots, but not in the leaves. The similar pattern observed for stress-induced changes in salicylic acid and ortho-hydroxy-cinnamic acid contents suggested that salicylic acid may play a decisive role via ortho-hydroxy-cinnamic acid. The results indicated that UV-B radiation might have either a positive or negative impact under the same conditions in wheat, depending on the type of secondary abiotic stress factor. The protective or damaging effects observed may be related to changes in the levels of phenolic compounds

    Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings

    Get PDF
    Hydrogen sulphide (H2S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H2S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H2S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (Fv/Fm) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H2S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome oxidase (CCO) were down-regulated after exposure to the optimal concentration of H2S. These findings suggest that increases in RuBISCO activity and the function of thiol redox modification may underlie the amelioration of photosynthesis and that H2S plays an important role in plant photosynthesis regulation by modulating the expression of genes involved in photosynthesis and thiol redox modification

    Role of salicylic acid in acclimation to low temperature

    Get PDF
    Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA),phenolic compound produced by a wide range of plant species, a may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed

    Effect of salicylic acid pretreatment on cadmium toxicity in wheat

    No full text
    corecore