5,242 research outputs found

    Inflaton perturbations in brane-world cosmology with induced gravity

    Get PDF
    We study cosmological perturbations in the brane models with an induced Einstein-Hilbert term on a brane. We consider an inflaton confined to a de Sitter brane in a five-dimensional Minkowski spacetime. Inflaton fluctuations excite Kaluza-Klein modes of bulk metric perturbations with mass m2=−2(2ℓ−1)(ℓ+1)H2m^2 = -2(2\ell-1) (\ell +1) H^2 and m2=−2ℓ(2ℓ+3)H2m^2 = -2\ell(2\ell+3) H^2 where ℓ\ell is an integer. There are two branches (±\pm branches) of solutions for the background spacetime. In the ++ branch, which includes the self-accelerating universe, a resonance appears for a mode with m2=2H2m^2 = 2 H^2 due to a spin-0 perturbation with m2=2H2m^2 = 2H^2. The self-accelerating universe has a distinct feature because there is also a helicity-0 mode of spin-2 perturbations with m2=2H2m^2 = 2H^2. In the −- branch, which can be thought as the Randall-Sundrum type brane-world with the high energy quantum corrections, there is no resonance. At high energies, we analytically confirm that four-dimensional Einstein gravity is recovered, which is related to the disappearance of van Dam-Veltman-Zakharov discontinuity in de Sitter spacetime. On sufficiently small scales, we confirm that the lineariaed gravity on the brane is well described by the Brans-Dicke theory with ω=3Hrc\omega=3Hr_c in −- branch and ω=−3Hrc\omega = -3H r_c in ++ branch, respectively, which confirms the existence of the ghost in ++ branch. We also study large scale perturbations. In ++ branch, the resonance induces a non-trivial anisotropic stress on the brane via the projection of Weyl tensor in the bulk, but no instability is shown to exist on the brane.Comment: 20 pages, 4 figure

    Scalar cosmological perturbations in the Gauss-Bonnet braneworld

    Get PDF
    We study scalar cosmological perturbations in a braneworld model with a bulk Gauss-Bonnet term. For an anti-de Sitter bulk, the five-dimensional perturbation equations share the same form as in the Randall-Sundrum model, which allows us to obtain metric perturbations in terms of a master variable. We derive the boundary conditions for the master variable from the generalized junction conditions on the brane. We then investigate several limiting cases in which the junction equations are reduced to a feasible level. In the low energy limit, we confirm that the standard result of four-dimensional Einstein gravity is reproduced on large scales, whereas on small scales we find that the perturbation dynamics is described by the four-dimensional Brans-Dicke theory. In the high energy limit, all the non-local contributions drop off from the junction equations, leaving a closed system of equations on the brane. We show that, for inflation models driven by a scalar field on the brane, the Sasaki-Mukhanov equation holds on the high energy brane in its original four-dimensional form.Comment: 18 pages, v2: minor changes, reference added, v3: comments and references added, accepted for publication in JCA

    Rotation and X-ray emission from protostars

    Full text link
    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is a fast rotator (near break-up), while WL6 rotates with a significantly longer period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the central stars of YLW15 and WL6 respectively. On the long term, the interactions between the star and the disk results in magnetic braking and angular momentum loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same order as the estimated duration of the Class~I protostar stage. Close to the birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star, such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their lower-mass counterparts have had the time to spin down. The rapid rotation and strong star-disk magnetic interactions of YLW15 also naturally explain the observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA thermal radio emission. This paper thus proposes the first clues to the rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part 1 issue

    Ghosts in the self-accelerating universe

    Get PDF
    The self-accelerating universe realizes the accelerated expansion of the universe at late times by large-distance modification of general relativity without a cosmological constant. The Dvali-Gabadadze-Porrati (DGP) braneworld model provides an explicit example of the self-accelerating universe. Recently, the DGP model becomes very popular to study the observational consequences of the modified gravity models as an alternative to dark energy models in GR. However, it has been shown that the self-accelerating universe in the DGP model contains a ghost at the linearized level. The ghost carries negative energy densities and it leads to the instability of the spacetime. In this article, we review the origin of the ghost in the self-accelerating universe and explore the physical implication of the existence of the ghost.Comment: Invited topical review for Classical and Quantum Gravity, 20 pages, 4 figure

    Emission from Bow Shocks of Beamed Gamma-Ray Bursts

    Get PDF
    Beamed gamma-ray burst (GRB) sources produce a bow shock in their gaseous environment. The emitted flux from this bow shock may dominate over the direct emission from the jet for lines of sight which are outside the angular radius of the jet emission, theta. The event rate for these lines of sight is increased by a factor of 260*(theta/5_degrees)^{-2}. For typical GRB parameters, we find that the bow shock emission from a jet with half-angle of about 5 degrees is visible out to tens of Mpc in the radio and hundreds of Mpc in the X-rays. If GRBs are linked to supernovae, studies of peculiar supernovae in the local universe should reveal this non-thermal bow shock emission for weeks to months following the explosion.Comment: ApJ, submitted, 15 pages, 3 figure

    Simulation of I-V Hysteresis Branches in An Intrinsic Stack of Josephson Junctions in High TcT_c Superconductors

    Full text link
    I-V characteristics of the high Tc_c superconductor Bi2_2Sr2_2Ca1_1C2_2O8_8 shows a strong hysteresis, producing many branches. The origin of hysteresis jumps is studied by use of the model of multi-layered Josephson junctions proposed by one of the authors (T. K.). The charging effect at superconducting layers produces a coupling between the next nearest neighbor phase-differences, which determines the structure of hysteresis branches. It will be shown that a solution of phase motions is understood as a combination of rotating and oscillating phase-differences, and that, at points of hysteresis jumps, there occurs a change in the number of rotating phase-differences. Effects of dissipation are analyzed. The dissipation in insulating layers works to damp the phase motion itself, while the dissipation in superconducting layers works to damp relative motions of phase-differences. Their effects to hysteresis jumps are discussed.Comment: 18 pages, Latex, 8 figures. To be appear in Phys.Rev.B Vol.60(1999

    Suzaku Observations of Ejecta-Dominated Galactic Supernova Remnant G346.6-0.2

    Get PDF
    We present here the results of the X-ray analysis of Galactic supernova remnant G346.6-0.2 observed with {\it Suzaku}. K-shell emission lines of Mg, Si, S, Ca and Fe are detected clearly for the first time. Strong emission lines of Si and S imply that X-ray emission nature of G346.6-0.2 is ejecta-dominated. The ejecta-dominated emission is well fitted with a combined model consisting of thermal plasma in non-equilibrium ionization and a non-thermal component, which can be regarded as synchrotron emission with a photon index of Γ\Gamma ∼0.6\sim 0.6. Absorbing column density of NH∼2.1×1022N_{\rm H}\sim2.1\times10^{22} cm−2{\rm cm^{-2}} is obtained from the best-fitting implying a high-density medium, high electron temperature of kTe∼1.2kT_{\rm e}\sim1.2 keV, and ionization timescale of net∼2.9×1011n_{\rm e}t\sim2.9\times10^{11} cm−3s{\rm cm^{-3}s} indicating that this remnant may be far from full ionization equilibrium. The relative abundances from the ejecta show that the remnant originates from a Type Ia supernova explosion.Comment: 7 pages, 4 figur

    Consistency test of general relativity from large scale structure of the Universe

    Get PDF
    We construct a consistency test of General Relativity (GR) on cosmological scales. This test enables us to distinguish between the two alternatives to explain the late-time accelerated expansion of the universe, that is, dark energy models based on GR and modified gravity models without dark energy. We derive the consistency relation in GR which is written only in terms of observables - the Hubble parameter, the density perturbations, the peculiar velocities and the lensing potential. The breakdown of this consistency relation implies that the Newton constant which governs large-scale structure is different from that in the background cosmology, which is a typical feature in modified gravity models. We propose a method to perform this test by reconstructing the weak lensing spectrum from measured density perturbations and peculiar velocities. This reconstruction relies on Poisson's equation in GR to convert the density perturbations to the lensing potential. Hence any inconsistency between the reconstructed lensing spectrum and the measured lensing spectrum indicates the failure of GR on cosmological scales. The difficulties in performing this test using actual observations are discussed.Comment: 7 pages, 1 figur

    A New System of Parallel Isolated Nonthermal Filaments Near the Galactic Center: Evidence for a Local Magnetic Field Gradient

    Full text link
    We report the discovery of a system of isolated nonthermal filaments approximately 0.5 deg. northwest (75 pc in projection) of Sgr A. Unlike other isolated nonthermal filaments which show subfilamentation, braiding of subfilaments, and flaring at their ends, these filaments are simple linear structures and more closely resemble the parallel bundled filaments in the Galactic center radio arc. However, the most unusual feature of these filaments is that the 20/90 cm spectral index uniformly decreases as a function of length, in contrast to all other nonthermal filaments in the Galactic center. This spectral gradient may not be due to simple particle aging but could be explained by a curved electron energy spectrum embedded in a diverging magnetic field. If so, the scale of the magnetic gradient is not consistent with a large scale magnetic field centered on Sgr A* suggesting that this filament system is tracing a local magnetic field.Comment: 10 pages, AASTeX 5.01 LaTeX2e; 7 figures in 9 PostScript files; scheduled for publication in the 2001 December 10, v. 563 issue of Ap
    • …
    corecore