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Ghosts in the self-accelerating universe

Kazuya Koyama∗

Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 2EG, UK

The self-accelerating universe realizes the accelerated expansion of the universe at late times
by large-distance modification of general relativity without a cosmological constant. The Dvali-
Gabadadze-Porrati (DGP) braneworld model provides an explicit example of the self-accelerating
universe. Recently, the DGP model becomes very popular to study the observational consequences
of the modified gravity models as an alternative to dark energy models in GR. However, it has been
shown that the self-accelerating universe in the DGP model contains a ghost at the linearized level.
The ghost carries negative energy densities and it leads to the instability of the spacetime. In this
article, we review the origin of the ghost in the self-accelerating universe and explore the physical
implication of the existence of the ghost.

I. INTRODUCTION

The acceleration of the late-time universe, as implied by observations of Supernovae redshifts [1, 2], cosmic
microwave background anisotropies [3] and the large-scale structure [4], poses one of the deepest theoretical
problems facing cosmology. Within the framework of general relativity (GR), the acceleration must originate
from a dark energy field with effectively negative pressure, such as vacuum energy or a slow-rolling scalar
field (“quintessence”). So far, none of the available models has a natural explanation. For example, in the
simplest option of vacuum energy, leading to the “standard” LCDM model, the incredibly small,

ρΛ,obs =
Λ

8πG
∼ H2

0M2
P ≪ ρΛ,theory , (1)

and incredibly fine-tuned,

ΩΛ ∼ Ωm|today , (2)

value of the cosmological constant cannot be explained by current particle physics.
An alternative to dark energy plus GR is provided by models where the acceleration is due to modifications

of gravity on very large scales, r & H−1
0 (see [5, 6] and references therein). One of the simplest covariant

models is based on the Dvali-Gabadadze-Porrati (DGP) brane-world model [7], in which gravity leaks off
the 4D Minkowski brane into the 5D “bulk” Minkowski spacetime at large scales. The 5D action describing
the DGP model is given by

S =
1

2κ2

∫

d5x
√−gR +

1

2κ2
4

∫

d4x
√−γ (4)R −

∫

d4x
√−γLm. (3)

The important ingredient of the model is the induced Einstein-Hilbert term on the brane (see [8] for an early
attempt). The existence of the brane imposes the junction condition for the metric at the position of the
brane:

Kµν − Kηµν = −κ2

2
(Tµν − κ−2

4 Gµν), (4)

where Kµν is the extrinsic curvature and we assume the refection (Z2) symmetry across the brane. Due to
the induced Einstein-Hilbert action, the 4D Einstein tensor appears in the junction condition.

On small scales, gravity is effectively bound to the brane and 4D Newtonian dynamics is recovered to a
good approximation. The transition from 4- to 5D behaviour is governed by a crossover scale rc [7]

rc =
κ2

2κ2
4

. (5)
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The weak-field gravitational potential behaves as [7]

Ψ ∼
{

r−1 for r < rc,
r−2 for r > rc.

(6)

The DGP model was generalized by Deffayet to a Friedman-Robertson-Walker brane in a Minkowski bulk
[9, 10]; the gravity leakage at late times initiates acceleration – not due to any negative pressure field, but
due to the weakening of gravity on the brane. The energy conservation equation remains the same as in GR,
but the Friedman equation is modified:

ρ̇ + 3H(ρ + p) = 0 , (7)

H2 − H

rc
=

8πG

3
ρ . (8)

The modified Friedman equation (8) shows that at late times in a CDM universe, with ρ ∝ a−3 → 0, we
have

H → H∞ =
1

rc
. (9)

Since H0 > H∞, in order to achieve acceleration at late times, we require rc & H−1
0 , and this is confirmed

by fitting SN observations [11]. Like the LCDM model, the DGP model is simple, with a single parameter
rc to control the late-time acceleration although the DGP model does not provide a natural solution to the
late-acceleration problem; similarly to the LCDM model, where Λ must be fine-tuned, the DGP parameter
rc must be fine-tuned to match observation.

The most interesting aspect of the DGP model is that there is a possibility to distinguish the model from
dark energy models in GR. This is because the recovery of the 4D GR on small scales is very subtle. Although
the weak-field gravitational potential behaves as 4D on scales smaller than rc, the linearized gravity is not

described by GR. This is because there is no normalized zero-mode in this model and 4D gravity is recovered
as a resonance of the massive KK gravitons. The massive graviton contains 5 degrees of freedom compared
with 2 degrees of freedom in a massless graviton. One of them is a helicity-0 polarization. Due to this scalar
degree of freedom, linearized gravity is described by Brans-Dicke (BD) gravity with vanishing BD parameter
in the case of Minkowski spacetime. Thus this model would be excluded by solar system experiments.
However, the non-linear interactions of the scalar mode becomes important on larger scales than expected
[12–19]. Let us consider a static source with mass M . Gravity becomes non-linear near the Schwarzshild
radius rg = 2GM . However, the scalar mode becomes non-linear at r∗ = (rgr

2
c )1/3 (the Vainstein radius)

which is much larger than rg if rc ∼ H−1
0 . In fact, for the Sun r∗ is much larger than the size of the

solar system. A remarkable finding is at once the scalar mode becomes non-linear, GR is recovered. This
non-linear shielding of the scalar mode is crucial to escape from the tight solar system constraints. Fig. 1
summarizes the behaviour of gravity in the DGP model (see [20] for a review on the DGP model).

The fact that the linearized gravity is not described by GR offers an exciting possibility to distinguish this
model from the dark energy models in GR. In cosmology, the modification of linear perturbations affects the
growth rate of the structure in the Universe. Thus structure formation in the DGP model is different from
that in GR even if the expansion history of the Universe is exactly the same. Then combining the various
observations, it is possible to distinguish the DGP model from the dark energy models in GR. Due to this
possibility, the DGP model has been a very popular model for modified gravity alternative to dark energy
(for a review, see Ref. [6]).

However, these interesting features of gravity could be signatures of a pathology of the model. The non-
linear interaction of the scalar mode becomes important on very large scales compared with usual 4D gravity.
If we consider a Planck mass particle, the Vainstein scale becomes r∗ = (ℓplr

2
c )1/3 ∼ 1000km where ℓpl is

a Planck length and rc ∼ H−1
0 . This implies that quantum gravity corrections cannot be neglected below

1000km [21–23]. Even if we focus on the linearized behaviour of the scalar mode, there appears a problem
of a ghost instability [22–28]. In the case where the brane is described by de Sitter spacetime, it has been
proved that the scalar mode becomes a ghost.

In this article, we focus on the problem of the ghost that appears in the self-accelerating universe. In
section II, we study the spectrum of linearized perturbations about a de Sitter brane. Then we identify the
origin of the ghost in section III. For the positive tension brane, the ghost is originated from a massive spin-2
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FIG. 1: Summary of the behaviour of gravity in the DGP model. At large scales r > rc, the theory is 5D. On
small scales r < rc, gravity becomes 4D but the linearized theory is described by a Brans-Dicke theory. This affects
the large scale structure (LSS) and the Integrated Sachs-Wolfe (ISW) effect and its cross-correlation to LSS. Below
the Vainstein radius r < r∗, the theory approaches GR. This transition can be probed by weak lensing and cluster
abundance as the non-linear dynamics is important for these measures. The solar system tests also provide constraints
on the model in the 4D Einstein phase. From [6].

graviton with mass 0 < m2 < 2H2. For the negative tension brane, the spin-0 perturbation associated from
a fluctuation of the brane becomes a ghost. For a self-accelerating brane without tension, the ghost appears
from the mixing between the spin-0 and spin-2 perturbations. In section IV, the spectrum with matter
source on the brane is studied. We highlight a difference between the DGP model and the massive gravity
model that makes it difficult to remove the ghost by a simple modification of the model such as two-brane
model. This ghost can be identified with the brane bending mode on small scales which is a mix of helicity-0
components of massive spin-2 perturbations and the spin-0 perturbation. In section V, the effective action
for the brane bending mode is discussed. The leading order non-linear interaction is identified. It defines the
Vainstein length below which the linearized analysis cannot be trusted. We confirm again the existence of
ghost at the linearized level. In section VI, fully non-linear solutions are discussed. These solutions indicate
that the self-accelerating universe may suffer from instabilities even at non-perturbative level. Section VII
is devoted to conclusions and discussions.

II. PERTURBATIONS ABOUT A DE SITTER BRANE

A. Background solution

Let us consider a situation where the brane is de Sitter spacetime. The bulk spacetime is a 5D Minkowski
spacetime and the metric is given by

ds2 = dy2 + N(y)2γµνdxµdxν , N(y) = 1 ± H |y|, (10)

where γµν is the metric for the de Sitter spacetime and the brane is located at y = 0. The Z2 symmetry
across the brane is imposed. The junction condition at the brane gives the modified Friedmann equation

±H

rc
= H2 − κ2

4

3
σ, (11)

where σ is the tension of the brane. There are two branches of bulk solutions. The solution with − sign
is called the normal branch whereas the solution with + sign is called the self-accelerating solution. These
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two different solutions correspond to different embeddings of the brane. The 4D de Sitter spacetime is a
hyperboloid in a 5D Minkowski spacetime. In the self-accelerating universe, we take the outside of the
hyperboloid as the bulk spacetime. On the other hand, in the normal branch, we take the inside of the
hyperboloid.

FIG. 2: Embedding of a de Sitter brane in a flat 5D bulk. The brane world volume is the hyperboloid in the Minkowski
bulk. The normal branch corresponds to keeping the interior of the hyperboloid, and its mirror image around the
brane. In contrast, for the self-accelerating branch, we keep the exterior, and its reflection. From [26].

B. Spectrum of perturbations

We study the linear perturbations

ds2 = dy2 + (N(y)2γµν + hµν)dxµdxν , (12)

about the background de Sitter spacetime. In addition to the gravitational perturbations hµν , we must take
into account a perturbation of the position of the brane y = ϕ(x) [30]. Using the transverse-traceless gauge
∇µhµν = h = 0, the perturbed junction condition is given by [24]

kµν − Hhµν − rc

[

Xµν(h) − κ2
4

(

Tµν − 1

3
γµνT

)]

= −(1 − 2Hrc)
(

∇µ∇ν + H2γµν

)

ϕ, (13)

where H = N ′/N |y=0 = ±H , ∇µ is a covariant derivative with respect to γµν , kµν = (1/2)∂yhµν on the
brane is perturbations of the extrinsic curvature Kµν and Xµν is given by

Xµν = δ(4)Gµν + 3H2hµν

= −1

2

(

24hµν −∇µ∇αhα
ν −∇ν∇αhα

µ + ∇µ∇νh
)

− 1

2
γµν(∇α∇βhαβ − 24h) + H2

(

hµν +
1

2
γµνh

)

. (14)
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The equation of motion for ϕ is obtained from the traceless condition h = 0;

(1 − 2Hrc)(24 + 4H2)ϕ =
κ2T

6
, (15)

where 24 = ∇µ∇µ.
Let us find solutions for the vacuum brane Tµν = 0. Using the separation of variables hµν =

∫

dm eµν(x)um(y), the equation of motion in the bulk is written as

u′′
m +

1

N2
(m2 − 2H2)um = 0, (24 − m2 − 2H2)eµν(x) = 0, (16)

where prime denotes a derivative with respect to y. There are two types of solutions to Eq. (13). One type
of the solution is a homogeneous solution with ϕ = 0, which is called the spin-2 perturbation. The spin-2
perturbations χµν satisfy the junction condition without ϕ

χ′
µν − 2Hχµν = −m2rcχµν . (17)

We find a tower of continuous Kaluza-Klein (KK) modes starting from m2 = (9/4)H2 as well as a normal-
izable discrete mode. In the self-accelerating branch, the solution for the discrete mode is given by

umd
∝ N(y)−1+1/Hrc ,

m2
d

H2
=

1

(Hrc)2
(3Hrc − 1), (18)

for Hrc > 2/3 [29]. For Hrc > 1, the mass is in the range 0 < m2
d ≤ 2H2 where m2

d = 2H2 for the
self-accelerating universe Hrc = 1 and m2

d → 0 for Hrc → ∞. In the normal branch, the discrete mode is a
zero mode m2

d = 0.
The other type of solution to Eq. (13) is an inhomogeneous solution sourced by the scalar mode ϕ. We

call this solution the spin-0 perturbation. In the self-accelerating branch, there is a normalizable solution
given by [24]

hµν =
1 − 2Hrc

H(1 − Hrc)
(∇µ∇ν + H2γµν)ϕ. (19)

This is a solution with m2 = 2H2. In the normal branch, there is no normalisable spin-0 perturbation. Then,
the normal branch is ghost-free. Eq. (19) is singular at Hrc = 1 and we will deal with this case separately
in section III.C.

III. GHOST IN DE SITTER SPACETIME

A. Effective action

We can construct the 2nd order action for hµν and ϕ from the 5D action (3). The result is given by [24]

δ2S = − 1

4κ2

∫

d5x
√−gN−4hµνδ(5)Gµν +

1

κ2

∫

d4x
√−γLB, (20)

where δ(5)Gµν is the 5D perturbed Einstein tensor and

LB = kµνhµν − kh +
1

2
H(h2 − hµνhµν)

+ (1 − 2Hrc)
(

hµν∇µ∇νϕ − h∇ρ∇ρϕ − 3H2hϕ
)

− 3H
(

−(1 − 2Hrc)ϕ(24 + 4H2)ϕ +
κ2

3
Tϕ

)

+
1

2
κ2hµνTµν − rc

2
hµνXµν(h). (21)
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This action gives the correct equation of motion and the junction condition for hµν and the equation of
motion for ϕ.

In the following discussions, we focus on the self-accelerating branch. We can derive an effective action
for the brane fluctuation ϕ by substituting the 5D solution for hµν given by ϕ (19) into the 5D action (20)
and get the off-shell action for ϕ by integrating out only with respect to the extra coordinate y [31]. This
yields the action for ϕ as

Sϕ =
3H

2κ2

(

1 − 2Hrc

1 − Hrc

)
∫

d4x
√−γϕ(24 + 4H2)ϕ. (22)

The 4D effective action for the spin-2 perturbations is also obtained in a similar way. For the discrete mode
with m2

d, we get

Sχ =
rc(3Hrc − 1)

4κ2(3Hrc − 2)

∫

d4x
√
−γχµν(24 − 2H2 − m2

d)χµν , (23)

where transverse-traceless gauge fixing conditions ∇µχµν = χµ
µ = 0 are imposed . This is exactly the same

action for the spin-2 perturbations in the 4D massive gravity theory where the Pauli-Fierz (PF) mass term
is added to the Einstein-Hilbert action by hand [32]

SM = −M2

8κ2
4

∫

d4x
√−γ(hµνhµν − h2). (24)

B. Ghost in de Sitter spacetime with a tension

Ref. [24] studied the existence of the ghost based on the above effective action. In the limit Hrc → ∞, the
action (23) approaches the one for massless spin-2 perturbations. However, there is a discontinuity between
the massless perturbations and the massive perturbations that is known as the van Dam-Veltman-Zakharov
discontinuity [33]. Due to the lack of gauge symmetry, the massive spin-2 perturbations contain a helicity-0
excitation. Moreover, it has been shown that this helicity-0 excitation becomes a ghost if 0 < M2 < 2H2

[34, 35] (see also [26]). This is exactly the same mass range for the discrete mode in the self-accelerating
branch for Hrc > 1. Thus we identify the ghost as the helicity-0 mode of the discrete mode of the spin-2
perturbations. On the other hand, for Hrc < 1, the spin-2 perturbations become healthy as the mass for the
spin-2 perturbations is larger than 2H2. However, in this case, the coefficient in front of the effective action
for the spin-0 perturbations becomes negative and the spin-0 perturbation becomes a ghost.

2
9

H2

    

0 0

   

cc

H

md
2

2H2spin 0

spin 2 

1<Hr 1>Hr

2

H2 2

m2 m2

m
4
9

d

4

FIG. 3: Summary of the mass spectrum of the scalar perturbations in + branch. Spin-2 perturbation has continuous
modes with m2

≥ (9/4)H2 and a discrete mode with m2 = m2

d while spin-0 perturbation has m2 = 2H2. In the limit
Hrc → 1, both the helicity-0 excitation of spin-2 perturbation and the spin-0 perturbation have mass m2 = 2H2 and
there is a resonance.
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FIG. 4: Summary of the existence of the ghost. From [24].

C. Ghost in self-accelerating universe

In the self-accelerating universe Hrc = 1, the mass of the discrete mode of the spin-2 perturbations becomes
2H2. This is a special mass in the massive gravity as the action is invariant under the transformation

χµν → χµν + (∇µ∇ν − H2γµν)X, (25)

where X is any solution of the equation (24 + 4H2)X = 0. This is so called enhanced symmetry and the
helicity-0 mode can be eliminated by this symmetry [35]. Then there are only four polaization when the
mass is m2 = 2H2 and the ghost disappears.

However, this does not happen in the self-accelerating universe as there is an additional spin-0 perturba-
tions with the same mass [25]. In fact in the self-accelerating universe, Hrc = 1, the bulk wave function for
the discrete mode is given by umd

∝ N(y) and it is the same as the spin-0 perturbation. Then the discrete
mode of the spin-2 perturbations and the spin-0 perturbation degenerate and they can mix. This comes
from the fact that at m2 = 2H2, the spin-0 and spin-2 perturbations degenerate. In fact we can make the
spin-2 perturbations from a scalar

h(2H2)
µν = (∇µ∇ν − H2γµν)X, (24 + 4H2)X = 0. (26)

This is a scalar mode with mass squared −4H2. At the same time hµν is a transverse-traceless perturbations
and from the identity,

(24 − 4H2)h(2H2)
µν =

(

∇µ∇ν − H2γµν

)

(24 + 4H2)X = 0,

it is identified to have a mass given by m2 = 2H2.
Let us investigate the limit Hrc → 1 carefully. The solutions for the metric perturbations are given by

hµν = χmd

µν (x)umd
(y) +

1 − 2Hrc

H(1 − Hrc)
(∇µ∇ν + H2γµν)ϕ, (27)

where umd
is given by Eq. (18) and we only consider the localized modes. The limit Hrc → 1 looks singular,

but we can perform a field re-definition

χmd

µν (x) = Aµν − 1 − 2Hrc

H(1 − Hrc)
(∇µ∇ν + H2γµν)ϕ. (28)

The metric perturbations read

hµν(x, y) = Aµνumd
(y) +

1 − 2Hrc

H(1 − Hrc)
(∇µ∇ν + H2γµν)ϕ(1 − umd

(y)). (29)

Then taking the limit Hrc → 1, we get [25]

hµν = Aµν(x) +
1

H
(∇µ∇ν + H2γµν)ϕ(x) log (1 + Hy) . (30)

Substituting this expressions into the bulk equation and the junction condition, we get an equation for Aµν

24Aµν − 4H2Aµν = H
(

∇µ∇ν + H2γµν

)

ϕ. (31)
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The effective action for Aµν and ϕ is obtained by substituting the solutions for Aµν and ϕ into the 5D
action and integrating out the extra-dimension as

Seff =
1

κ2H

∫

d4x
√−γ

{

− AµνXµν(A) − H2AµνAµν + H2A2

− H(Aµν∇µ∇νϕ − A24ϕ − 3H2Aϕ) − 9H2

4
ϕ(24 + 4H2)ϕ

}

,

(32)

where we introduced the notation A ≡ Aµ
µ. The first line in Eq. (32) coincides with the quadratic Lagrangian

for the Pauli-Fierz theory of massive gravity with m2 = 2H2. Thus the action could have the enhanced
symmetry (25) if there were no mixing to ϕ. However, the mixing between ϕ and Aνµ breaks this symmetry
explicitly.

In order to study the existence of the ghost, it is necessary to write the effective action only in terms of
physical degrees of freedom. Ref. [25] performed the Hamiltonian analysis to derive the reduced Hamiltonian
written only in terms of physical degrees of freedom. There are two dynamical degrees of freedom, namely
the spin-0 mode and the helicity-0 excitation of spin-2 perturbations. It is found that, in general, the
Hamiltonian cannot be diagonalized. However, on small scales under horizon, it is possible to diagonalize
the Hamiltonian and we find a ghost from a mixing between the spin-0 perturbation and the helicity-0
excitation of spin-2 perturbations.

D. Two-brane model

Ref. [28] tried to remove the ghost by adding the second brane in the bulk. In previous section, we saw
that the origin of the ghost for the positive tension brane is coming from the fact the discrete mode for
the spin-2 perturbations has a mass in the range 0 < m2 < 2H2. It is possible to eliminate this ghost by
introducing the second brane in the bulk. By making the distance between the two branes short, the mass
increases as in the usual Kalzua-Klein compactification. Once the mass becomes larger than 2H2, the spin-2
perturbations do not contain a ghost. In fact for Hrc = 1, once the second brane is put and it cuts off the
bulk spacetime, the mass becomes m2 > 2H2 regardless of the distance between the two branes. Note that
even in the presence of the second brane, the Friedman equation on the visible brane is unchanged and the
brane can self-accelerate.

However, as soon as the mass of the discrete mode of the spin-2 perturbations exceeds m2 = 2H2, it is
proven that the spin-0 perturbation becomes a ghost [28]. At the critical length between the two branes where
the mass of the discrete mode of the spin-2 perturbations is given by m2 = 2H2, the spin-0 perturbations mix
with the helicity-0 component of the spin-2 perturbations exactly in the same way as the self-accelerating
universe in one brane model and there appears a ghost.

The spin-0 perturbation is the radion that describes the distance between two branes. Then one would
try to remove this ghost by eliminating the radion by stabilizing the distance between two branes. Once
we stabilize the radion, the brane fluctuation mode with mass m2 = 2H2 becomes non-physical. The
simplest way to achieve the stabilization is to introduce a scalar field in the bulk. Then instead of the brane
fluctuation, there appears scalar field perturbations which can have a discrete mode and an infinite ladder
of massive modes. In general, the mass of the discrete mode is different from −4H2 which corresponds to
m2 = 2H2 in the spin-2 perturbations language. However, it turns out that if the mass of the discrete mode
of the spin-2 perturbations becomes m2 = 2H2, the discrete mode of the scalar field perturbations has a
mass m2 = −4H2 which is the special case where it can mix with the spin-2 perturbations. Then completely
the same phenomena happens as in the one brane model. Once the mass of the discrete mode of spin-2
perturbations exceeds 2H2, the helicity-0 mode of the spin-2 perturbation becomes non-ghost but the scalar
field perturbation becomes a ghost! Then it is impossible to remove the ghost. In the next section, we will
explain why it is impossible to remove the spin-2 ghost and spin-0 ghost simultaneously.

IV. SPECTRUM WITH MATTER SOURCE

In the previous section, we identify the origin of the ghost by the analysis of the spectrum without matter
source. The most interesting finding is that it is impossible to remove the spin-2 ghost and the spin-0 ghost
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simultaneously [26, 28]. We can clarify the reason for this by studying the spectrum with matter source. We
also derive the effective theory for perturbations on small scales.

A. Amplitude

We introduce matter source on the brane [26–28]. The junction condition for the transverse-traceless
modes including matter perturbations is given by Eq. (13). Using the equation of motion for the brane
bending Eq. (15), Eq. (13) is given by

(∂y − 2H)h(TT )
µν = −κ2Σµν − rc(24 − 2H2)h(TT )

µν , (33)

where

Σµν = Tµν − 1

3
H2γµνT +

1

3
(∇µ∇ν + H2γµν)(24 + 4H2)−1T. (34)

The solution for transverse-traceless perturbations can be obtained by the Green’s function which can be
constructed by solutions without source obtained in section II. The solution is written as

h(TT )
µν = −2κ2

∑

i

ui(0)2

24 − 2H2 − m2
i

Σµν . (35)

Here the solution for the properly normalized mode functions ui(0)2 are given by

u2
d(0) =

1

2rc

3Hrc − 2

3Hrc − 1
, m2

d =
3Hrc − 1

r2
c

,

u2
m(0) =

H

π

k2

(

m2rc

H − 3
2

)2

+ k2

, m2 >
9H2

4
, k =

√

m2

H2
− 9

4
. (36)

We should bear in mind that in the TT gauge, the brane is not located at y = 0 and the brane bending must
be taken into account. The induced metric on the brane is given by

hinduced
µν (0) = hTT

µν − 2Hγµνϕ. (37)

The one particle exchange amplitude is defined as

A ≡ 1

2
hinduced

µν (0)T µν =
1

2
h(TT )

µν T µν − HϕT. (38)

Using Eq. (35) and Eq. (15), A is calculated as

A = −κ2
∑

i

ui(0)2
[

Tµν
1

24 − 2H2 − m2
i

T µν − 1

3
T

1

24 + 6H2 − m2
i

T

+
1

3
H2T

1

(24 + 6H2 − m2
i )(24 + 4H2)

T

]

− H

1 − 2Hrc

κ2

6
T

1

24 + 4H2
T. (39)

The second line becomes a double pole when m2
i = 2H2 which occurs in the self-accelerating universe

Hrc = 1 [27]. Usually, a double pole can be recast into difference of two simple poles, giving rise to a ghost.
In fact, we can rewrite the second line as

T
1

(24 + 6H2 − m2
i )(24 + 4H2)

T =
1

m2
i − 2H2

T

(

1

24 + 6H2 − m2
i

− 1

24 + 4H2

)

T. (40)



10

The first term has a pole at 24 = m2
i −6H2 which corresponds to the spin-2 contributions. The second term

has a pole at 24 = −4H2 which corresponds to the spin-0 perturbation. Around m2
i = 2H2, these terms

become dominant in the amplitude and determine the existence of the ghost. A crucial point is that the
contribution of the spin-0 perturbation is always opposite to that of the spin-2 massive perturbations [28].
We have already seen that the massive spin-2 perturbations contain the helicity-0 mode that is a ghost if
0 < m2

i < 2H2. In fact we see that the sign of the amplitude changes at m2
i = 2H2. Then for 0 < m2

i < 2H2,
the spin-2 perturbation mediates the repulsive force. This means that spin-0 perturbation is not a ghost as it
must mediate the opposite force compare to massive spin-2 perturbations. On the other hand, for 2H2 < m2

i ,
the spin-2 perturbations do not carry a ghost and mediate a normal force. Then the spin-0 perturbations
should mediate a repulsive force and it should be the ghost. This explains the reason why the spin-0 ghost
appears as soon as the spin-2 ghost disappears.

In the self-accelerating universe, there appears a double pole [27]. This manifests the fact that the spin-
2 and spin-0 perturbations degenerate. In fact if we try to separate the poles for the spin-0 and spin-2
perturbations, we encounter a divergence. Then we need a careful treatment for this special case.

It should be emphasized that the existence of spin-0 contribution is crucial to have a non-singular ampli-
tude. It is instructive to compare the amplitude (39) with that in massive Pauli-Fierz theory [36]

Amassive = −κ2
4

[

Tµν
1

24 − 2H2 − M2
T µν − 1

3

M2 − 3H2

M2 − 2H2
T

1

24 + 6H2 − M2
T

]

. (41)

We can check that the spin-2 contributions in (39) are the summation of these massive spin-2 perturbations.
The amplitude is singular for M2 = 2H2. This comes from the fact that in Pauli-Fierz theory, we cannot
couple gravity to matter with non-vanishing trace of energy momentum tensor. This is because the equation
of motion is given by [36]

(2H2 − M2)(24 + 4H2)h =
8H2κ2

4

3
T, (42)

where h is the trace of perturbations and T must vanish for M2 = 2H2. This is the origin of the singularity
in the amplitude and this is a pathology of massive gravity theory in de Sitter spacetime. In the DGP
model, it is the brane bending mode that couples to the trace of energy momentum tensor and there is no
such a restriction even if the discrete mode has a mass m2

i = 2H2. In fact the singularity at m2
i = 2H2 is

exactly canceled by the spin-0 perturbations as can be seen in Eq. (40). Thus in the DGP, we do not have
the pathology and we can couple gravity to matter perturbations with non-zero trace of energy-momentum
tensor. However, we have seen that it is this mechanism that makes the spin-0 perturbation a ghost when the
spin-2 perturbation becomes non-ghost: in order to cancel the singularity in the spin-2 sector at m2

i = 2H2,
the spin-0 contribution must be opposite to that of the spin-2 perturbations.

B. Effective theory on small scales

On small scales, it is possible to derive the 4D effective theory for perturbations. Let us consider the limit

24 ≫ H2, m2
i . (43)

Then the amplitude is approximated as

A = −κ2
∑

i

ui(0)2
[

Tµν
1

24
T µν − 1

3
T

1

24
T

]

− κ2

6

H

1 − 2Hrc
T

1

24
T. (44)

Note that the self-accelerating universe Hrc = 1 is not a special case anymore. Now using the solutions for
the mode functions we get

∑

i

ui(0)2 = ud(0)2 +
∑

um(0)2

=
1

2rc

3Hrc − 2

3Hrc − 1
+

H

π(Hrc)2

∫ ∞

0

dk
k2

(

k2 + 9
4

) (

k2 + 9
4 − m2

d

)

=
1

2rc
. (45)
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The effective gravitational coupling is read as

κ2
∑

i

ui(0)2 = κ2
4. (46)

Thus the 4D gravity is recovered by the summation of massive gravitons. Then the amplitude is calculated
as

A = −κ2
4

[

Tµν
1

24
T µν − 1

3
T

1

24
T

]

− κ2
4

3

Hrc

1 − 2Hrc
T

1

24
T. (47)

The first terms is exactly the same as the amplitude of massive gravity in the Minkowski spacetime. Due to
the scalar polarisation, the coefficient in front of T2

−1
4 T is 1/3 not 1/2. The last term represents the effect

of the curvature of the brane. Then finally we get

A = −κ2
4

[

Tµν
1

24
T µν − 1

3

1 − 3Hrc

1 − 2Hrc
T

1

24
T

]

. (48)

This result can be compared with the 4D Brans-Dicke (BD) theory. In the BD theory with BD parameter
ω, the amplitude is given by

A = −κ2
4

[

Tµν
1

24
T µν − 1

3

1 + ω

1 + 2ω
3

T
1

24
T

]

. (49)

Then the BD parameter is determined as

ω = −3Hrc. (50)

This agrees with the results obtained in Refs. [16, 17, 37, 38]. It is known that the BD theory contains a
ghost if

ω < −3

2
. (51)

This means that there is a ghost if Hrc > 1/2, which agrees with the spectrum analysis.

C. Boundary effective action

The analysis in the previous section indicates that it is possible to derive the 4D effective action on small
scales. Let us again consider the limit

24 ≫ r−2
c , H2 (52)

Using this approximation, we can only keep the 4D terms in the 5D second order action (20) and (21). Then
the 4D boundary effective action is obtained as

SB =
1

κ2

∫

d4x
√−γ

[

(1 − 2Hrc)
(

hµν∇µ∇νϕ − h∇ρ∇ρϕ − 3H2hϕ
)

−3H
(

−(1 − 2Hrc)ϕ(24 + 4H2)ϕ +
κ2

3
Tϕ

)

+
1

2
κ2hµνTµν − rc

2
hµνXµν(h)

]

, (53)

where H = H in the self-accelerating branch. It is possible to check that this action consistently reproduce
the amplitude (48). We can diagonalise the action by defining

hµν = χµν − r−1
c (1 − 2Hrc)γµνϕ. (54)

The resultant action is

SB =
1

2κ2
4

∫

d4x
√−γ

[

− χµνXµν(χ) + κ2
4χµνT µν +

3

2r2
c

{

(1 − 2Hrc)ϕ(24 + 4H2)ϕ − κ2

3
ϕT

}

]

. (55)

The sign of the kinetic term ϕ changes at Hrc = 1/2 and we find that the brane bending mode ϕ becomes
a ghost for Hrc > 1/2.
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V. BOUNDARY EFFECTIVE ACTION

In the previous section, we show that it is possible to derive the 4D effective action. Refs.[22] and [23]
derived the 4D effective action for the brane bending mode including the non-linear interactions and identified
the scale at which the linearized analysis cannot be trusted.

A. The effective action for the brane bending

Refs. [22] and [23] derived the boundary effective action for perturbations on Minkowski background,
gMN = ηMN + hMN . They integrated out the bulk to obtain an effective action for the 4D field living on
the boundary. The final result at the quadratic order is

Sb =
1

4κ2
4

(

1

2
χµν24χ

µν − 1

4
χ24χ − r−1

c nµ△nµ + 3r−2
c π24π

)

, (56)

where △ is a non-local differential operator, △ =
√−24 and the kinetic terms have been diagonalized by

defining

hyy = −2△π, nµ = Nµ − ∂µπ, χµν = hµν − r−1
c πηµν , (57)

and Nµ is a shift which is (y, µ)-component of the 5D metric, gyµ. In this gauge, π plays the same role as
the brane bending ϕ. Note that this result is consistent with the previous effective action (55) for tensor
and scalar parts if one takes H = 0.

By taking into account bulk interaction with higher powers of hMN , one finds that the leading order
boundary interaction terms is cubic in π, and involves four derivatives,

S(3) = − 1

2κ2

∫

d4x(∂π)224π. (58)

In order to extract the non-trivial non-linear interactions, let us consider the case where the flat approxi-
mation is good χµν ≪ 1. However we want to preserve the self-coupling of the π field. In terms of canonically
normalized field π̂ defined by π̂ = π/(2κ4rc), the cubic self-coupling is unchanged if we keep

Λ =

(

2M6
5

M4

)1/3

=

(

M4

2r2
c

)1/3

, κ2 =
1

M3
5

, κ2
4 =

1

M2
4

, (59)

fixed (see below). We also preserve the interaction between π and the energy momentum tensor Tµν . The
interaction between hµν and Tµν is given by (1/2)hµνT µν . From the definition of π, π̂ interacts with matter
via (1/M4)π̂T . Therefore, if we take the formal limit

M4 → ∞, rc → ∞, Tµν → ∞, Λ = const,
Tµν

M4
= const. (60)

we can decouple 4D gravity while keeping the full Lagrangian for π̂. It is possible to check that all further
interactions other than the cubic interactions vanish. Then the full action for the π̂ field in the flat spacetime
is given by

S =

∫

d4x

[

−3(∂π̂)2 − 1

Λ3
(∂π̂)224π̂ +

1

M4
π̂T

]

. (61)

From this action, the equation of motion for π is derived as

324π̂ − 1

Λ3
(∂µ∂ν π̂)2 +

1

Λ3
(24π̂)2 = − T

2M4
. (62)

It is possible to understand this equation from a geometric point of view. The Gauss-Codazzi equation in
the bulk is given by

(4)R + KµνKµν − K2 = 0. (63)
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The junction condition at the brane is given by

Kµν − Kηµν = −κ2

2
(Tµν − κ−2

4 Gµν). (64)

Then combining these equations we get

3K

rc
+ KµνKµν − K2 = − T

M2
4

. (65)

Note that this equation is exact as this is a combination of a geometric identity (63) and the junction
condition on the brane (64). From Eq. (57), the extrinsic curvature is calculated as

Kµν = − 1

rcΛ3
∂µ∂ν π̂, (66)

in the limit (60). Then Eq. (65) gives the equation of Eq. (62).
Once a solution of Eq. (62) or Eq. (65) is found, we can perturb π̂ and expand the action up to quadratic

order in the perturbations ρ. We find

δS =

∫

d4x
[

−3(∂ρ)2 − 2(K̃µν − ηµνK̃)∂µρ∂νρ
]

. (67)

where K̃µν = rcKµν and it satisfies

3K̃ + K̃µνK̃µν − K̃2 = − T

2Λ3M4
. (68)

B. Self-accelerating universe

Let us consider a de Sitter background solution with tension σ. The equation for K̃µν admits two branches
of solutions:

K̃µ
0 ν = Hrcδ

µ
ν , H ≡ 1 ±

√

1 + 4 r2
cσ/3M2

4

2rc
δµ
ν . (69)

This corresponds to de Sitter solution where the Hubble parameter H is given by

H = |H| (70)

The self-accelerating branch corresponds to + sign in Eq. (69). It is also possible to derive a corresponding
solution for π̂. The de Sitter invariant solutions are

π̂0 = −Hrc

2
Λ3xµxµ. (71)

Now let us consider a small fluctuations around the de Sitter spacetime. The action for the fluctuations
ρ (67) is given by

δS = −
∫

d4x
[

3 (1 − 2Hrc) (∂ρ)2
]

. (72)

This agrees with the result for perturbations around de Sitter solution in the self-accelerating branch in the
limit 24 ≫ H2. In particular, the fluctuation ρ becomes a ghost when Hrc > 1/2 in the self-accelerating
universe. In fact this was the first discovery of the ghost in the self-accelerating universe in literatures. Note
that for large Hrc, the kinetic term becomes large and the scalar mode becomes non-dynamical. In the
BD theory, this corresponds to the limits where the BD parameter ω = −3Hrc becomes infinite. Then we
recover GR at the linearized level [39]. In this limit, the non-linear interactions are also suppressed.
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C. Non-linearity interactions

Next, we study the effect of the non-linear interactions of π̂. Let is consider a static localized source of
mass M . We look for a static spherically symmetric solution π̂(r) [22, 23]. The equation for π̂ (62) is then
given by [18, 19]

(

d2

dr2
+

2

r

d

dr

)

(3βπ̂ + Ξ) =
ρ

2M4
, (73)

where β = 1 − 2Hrc and

Ξ =
2

Λ3

∫

1

r

(

dπ̂

dr

)2

dr. (74)

Then it is possible to integrate the equation to get

3βπ̂ + Ξ +
M4

2

rg

r
= 0, (75)

where

rg =
1

M2
4

∫ r

0

drr2ρ, (76)

is the Schwarzschild radius of the source. Hereafter, we assume rg = const, for simplicity. Taking the r
derivative of Eq. (75) gives an algebraic equation for dπ̂/dr. Then we get a solution for dπ̂/dr as

dπ̂

dr
=

3

4
βΛ3r

(

√

1 +
(r∗

r

)3

− 1

)

, (77)

where

r∗ =

(

8r2
crg

9β2

)1/3

, (78)

which is the Vainshtein radius for a source. On scales larger than r∗, the non-linear interactions can be
neglected. On the other hand, on scales smaller than r∗ the non-linear interactions cannot be neglected and
the linearized analysis cannot be trusted. Note that r∗ is much larger than rg if rc ∼ H0 where H0 is the
present-day horizon scale.

D. Spherically symmetric solution

Let us study the behaviour of the spherically symmetric solution [14, 16–19]. The metric perturbations
are given by

hµν = χµν +
2

M4
π̂ηµν , (79)

where χµν satisfies the 4D GR equations. We take the scalar perturbations on a brane as

ds2 = −(1 + 2Ψ)dt2 + e2Ht(1 + 2Φ)δijdxidxj . (80)

Then the solutions for the metric perturbations can be obtained as

Φ =
rg

2r
+

1

M4
π̂, (81)

Ψ = − rg

2r
+

1

M4
π̂. (82)
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On scales larger than the Vainshtein radius r > r∗, the solutions are given by

Φ =
rg

2r

(

1 − 1

3β

)

, (83)

Ψ = − rg

2r

(

1 +
1

3β

)

. (84)

These solutions can be described by BD theory with BD parameter ω = 3(1 − β)/2 = −3Hrc. This agrees
with the analysis in the previous section. On scales smaller than the Vainshtein radius, r < r∗, the cubic
interaction cannot be neglected. Then the linearized analysis cannot be trusted. In this case, the solutions
for Ψ and Φ are obtained as

Φ =
rg

2r
+ sign(β)

√

rgr

2r2
c

, (85)

Ψ = − rg

2r
+ sign(β)

√

rgr

2r2
c

. (86)

In this region, the corrections to the solution in 4D GR are suppressed for r < r∗ so that Einstein gravity is
recovered. From Eq. (73), we can see that Ξ dominates over the linear term in this region. This indicates
that once π̂ becomes non-linear, the solutions for the metric approach those in 4D GR. We should note that
β is negative in the self-accelerating solution while β is positive in the normal branch solution. Then the
corrections to 4D GR solutions have opposite signs in these solutions, as was first pointed out in Ref [16]. This
means that the metric perturbations on small scales r ≪ H−1 is sensitive to the cosmological background
solutions. We should note that Ref. [40] claimed that these solutions do not satisfy the full set of the non-
linear equations. However, Ref. [19] showed that these solution are fully consistent with the 5D non-linear
equations as long as we consider scales larger than rg.

VI. NON-PERTURBATIVE SOLUTIONS

In the previous section, we saw that the non-linear interaction of the brane bending mode is important
below Vainstein length r∗. This also means that as long as we consider length scales larger than Vainstein
radius, the linearized analysis can be trusted and we find a ghost. However, in massive gravity theory, it is
known that the non-linear interactions are very subtle. As in the DGP model, the perturbative approach
that takes into account non-linear interactions of the scalar mode (helicity-0 excitations) shows that the
solution approaches GR near the source [41, 42]. However numerical attempts to find fully non-perturbative
solutions have failed in massive gravity theory [43]. Then it is required to study fully non-linear solutions
carefully to check the validity of the linear perturbations [44].

A. Schwarzschild solution

The attempt to find fully non-perturbative Schwarzschild solution was made in Ref. [45]. They assume
that the 5D metric takes the form

ds2 = −eνdt2 + eλdr2 + r2dΩ2 + 2γdydr + eσdy2, (87)

where y is the extra-dimensional coordinate. In general, we should solve 5D Einstein equations and impose
the junction conditions to find solutions. Instead of solving the bulk, they assumed ν = −λ to close the
equations without solving the bulk equations. Then, remarkably, they can manage to find analytic solutions
for λ. In the normal branch, below the Vainstein radius, the solution is given by [45, 46]

−λ = −rg

r
− 0.84

(

r

rc

)2
(r∗

r

)2(
√

3−1)

, (88)

which is similar to the solution obtained in the previous section. However, on scales larger than Vainstein
scale, they find

−λ = −
r̃2
g

r2
, r̃g ∼ rg

(

rc

rg

)1/3

, (89)
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which is the 5D solution and quite different from the previous 4D BD solution. Especially the mass of the
source for observers located at r > r∗ is ‘screened’. In a naive perturbative approach, we would expect that
the large scale Newton potential behaves as

−λ = −
r2
g,5

r2
, r2

g,5 = 2G5M = 2rcrg. (90)

In the solution (89) the 5D gravitatinal length is smaller r̃2
g ≪ r2

g,5. This indicates that the effective mass

M̃ measured at r > r∗ is screened by M̃ = M(rg/rc)
1/3.

If this solution is a true non-perturbative solution in the DGP model, this means that the linearized
perturbations cannot be trusted even at r > r∗. However, we should bear in mind that the solution is
obtained by closing the equations by an ad hoc metric ansatz. It is far from trivial that the solution obtained
in this way satisfies the reasonable boundary conditions in the bulk. In fact it is pointed out that the
regularity condition in the bulk is crucial to specify the behaviour of gravity on the brane [38]. It is an open
question to check that the solution obtained in Ref. [45] has a regular bulk solution.

However, this solution also shows interesting features in the self-accelerating background that might be
related to the ghost. In the self-accelerating universe, the effective mass measured at r > r∗ becomes
negative. This suggests that the self-accelerating background may not be problem-free even in the full
non-linear theory.

B. Domain wall

The other example of the exact non-linear solutions is a domain wall. Ref. [47] found an exact domain wall
solution. In the 4D spacetime, the domain wall creates a jump in the extrinsic curvature. On the other hand,
the domain wall in the 5D spacetime is a co-dimension 2 object like a string. Then the domain wall creates
a deficit angle in 5D spacetime. The relation between the deficit angle δ and the tension of the domain wall
µ is given by

2Hrc tan γ ± γ =
σ

4M3
5

, (91)

where γ is related to the deficit angle as δ = ∓4γ, where − is for the self-accelerating branch and + is for
the normal branch. The first term comes from the jump of the 3D extrinsic curvature in the brane as in 4D
GR and the second term is the contribution from the deficit angle in the 5D spacetime.

For small tension σ ≪ M3
5 , the deficit angle is given by

δ =
1

1 − 2Hrc

σ

M3
5

, H = ±H. (92)

In the normal branch, there is a screening of the tension. The deficit angle in the 5D spacetime is smaller
than expected. On the other hand, in the self-accelerating branch solution, there is ’over-screening’. This
indicates that the wall in the self-accelerating universe behaves as with negative tension. Then it appears
that the stability of the solution is not granted. This may be related to the existence of the ghost. In fact, we
see that the factor that determines the screening 1−2Hrc is exactly the factor that determines the existence
of the ghost.

VII. CONCLUSIONS AND DISCUSSIONS

In this review, we discuss the ghost problem in the self-accelerating universe. First we studied the spectrum
of the perturbations without matter perturbations about a de Sitter brane. For the positive tension brane, the
ghost comes from the fact that there is a discrete mode for the spin-2 perturbations with mass 0 < m2 < 2H2.
The massive spin-2 perturbations contain a helicity-0 mode that becomes a ghost if the mass is in the range
0 < m2 < 2H2. In the self-accelerating universe without tension, the mass becomes m2 = 2H2. This
is a special mass in Pauli-Fierz massive gravity theory because there exists an ‘enhanced symmetry’ that
eliminates the helicity-0 mode. However, in the DGP model, there is a spin-0 perturbation with the same
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mass and this breaks the symmetry, leading to a ghost from the mixing between the spin-0 and spin-2
perturbations. For a negative tension brane, the spin-0 perturbation becomes a ghost if Hrc > 1/2. It is
easy to remove the spin-2 ghost by putting a second brane in the bulk and make the distance between the
two branes small. Then the mass of the discrete mode of the spin-2 perturbations becomes larger than 2H2.
However we find that the spin-0 perturbation, the radion, becomes a ghost. If we stabilize the radion, the
perturbations of the scalar field that is necessary to stabilize the radion becomes a ghost.

We recovered the same result by studying the spectrum with matter source. The one particle exchange
amplitude is the summation of massive spin-2 perturbations and a spin-0 perturbations. The amplitude of the
massive spin-2 perturbations diverges if the mass is m2 = 2H2. In the DGP model, the spin-0 perturbation
exactly cancels this singularity at Hrc = 1 where the spin-2 mass becomes m2 = 2H2. This means that
the spin-0 interaction is opposite to that of massive spin-2 perturbations. This is the reason why the spin-0
perturbation becomes a ghost once the massive spin-2 perturbation becomes healthy. At small scales, the
effective theory for perturbations is described by the BD theory with BD parameter ω = −3Hrc. Here the
BD scalar is a mix of the spin-0 perturbation and the helicity-0 component of spin-2 perturbations. In the
BD theory, the BD scalar mode becomes a ghost if ω < −3/2 and this condition is given by Hrc > 1/2 which
agrees with the spectrum analysis. This scalar can be identified as the brane bending mode. It is possible
to construct the effective action for the brane bending by keeping the boundary terms in the full 5D action.

The effective action for the brane bending was shown to be a powerful tool to analyze the non-linear
interactions of the scalar mode. In the decoupling limits where gravity decouples from the scalar interactions,
the cubic interaction is the dominant non-linear interaction. For a local source with the gravitational length
rg, the scalar mode becomes strongly coupled below the Vainstein length r∗ = (rgr

2
c )1/3. Then the linearized

perturbations cannot be trusted below this length scale. We checked that the effective action for the brane
bending reproduces the results obtained in the linearized analysis beyond r∗. Especially, the brane bending
mode becomes a ghost in this linear regime if Hrc > 1/2.

This seems to indicate that the linearized analysis makes sense at least at large scales r > r∗ and we
cannot avoid the ghost. However, in massive gravity theory, fully non-perturbative effects are very subtle
and it is possible that the linearized solution cannot be matched to the fully non-perturbed solutions. There
are two known fully non-perturbed solutions. One is Schwarzschild solution obtained in Ref. [45]. Although
it is an open question that this solution has a physical solution in the bulk, the solution does show that the
effective mass measured at r > r∗ becomes negative in the self-accelerating universe. This may be related to
the ghost in the perturbative solution. The other solution is a domain wall solution. In this case, the exact
5D solution is known. For a small domain wall tension, the domain wall has a negative deficit angle from 5D
point of view in the self-accelerating branch solutions. This is yet another evidence that the self-accelerating
universe suffers from the ghost instability even at non-perturbative level.

There are many open questions that deserve further studies. We will address some of issues.

Instabilities

The ghost has a wrong sign for its kinetic term. This means that the energy density can be indefinitely
negative. This can lead the classical instability of the system. In Ref. [26] it is argued that the self-accelerating
universe must be classically unstable. However, the ghost is found at linearized level and so far no classical
instability was found at linearized level. We should carefully study the non-linear interactions to address
the classical stability of the model and this is still an open question. See Ref. [48] for recent discussions on
non-linear instabilities.

Quantum mechanically, the ghost leads to spontaneous pair creation of ghosts and normal particles. Once
such a channel opens, Lorentz invariance leads to a divergence of the particle creation rate and the decay
rate of the vacuum is infinite. The same problem occurs in so-called phantom cosmology where the ghost
scalar field is introduced to explain the dark energy with equation of state smaller than −1. It is argued
that we can avoid the rapid decay of the vacuum if there is a Lorentz non-invariant UV cut off of the order
MeV in the phantom cosmology [49]. In the DGP model, the situation is more subtle [50]. If we consider
the situation in which there is a spin-2 ghost, we need to treat the helicity zero mode in a different way.
Otherwise, negative norm states appear. But if we take a different prescription for the quantization for the
helicity zero mode, this procedure necessarily breaks de Sitter invariance. When there is a spin-0 ghost, a
similar phenomenon happens. In this case, the mass of the ghost is given by −4H2. But we know that
there is no de Sitter invariant vacuum state for a scalar field with negative mass squared. Once de Sitter
invariance is broken, one may be allowed to consider the possibility that the non-covariant cutoff scale may
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arise due to the strong coupling effect. The strong coupling length is very large Λ−1 ∼ 1000 km. Then the
particle creation could be milder than the usual ghost in the Minkowski background [51]. Clearly, further
studies are necessary to verify this.

The fate of instabilities

If the self-accelerating branch solutions have the ghost instability, then we are naturally lead to ask what
does this solution decay to. An interesting fact is that the normal branch solutions are ghost-free. Then
it is tempting to think that the self-accelerating solutions decay into the normal branch solutions. In fact
for a given tension, the Hubble parameter in the self-accelerating universe is larger than that of the normal
branch solutions. Then there could be the nucleation of bubbles of the normal branch in the environment of
the self-accelerating branch solution. This would resemble a kind of false vacuum decay in de Sitter space.
False vacuum decay is described by an instanton which is a classical solution in an Euclidean time connecting
initial and final configurations. In our case, we are interested in a solution that interpolates between the self-
accelerating and the normal branches. Ref. [50] tried to construct such an instanton solution. It was found
that the solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However,
this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness
is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. It was
concluded that the thin wall instanton is unphysical, and that one cannot have processes connecting the two
branches. This suggests that the self-accelerating branch does not decay into the normal branch by forming
normal branch bubbles. Thus it is still unclear what is the end state of the ghost instability.

Possible ways out of the ghost?

In Ref. [27], several ways out of the ghost problem were discussed. In the self-accelerating universe
Hrc = 1, there could be the enhanced symmetry that can eliminate the helicity-0 ghost if there were no
spin-0 perturbation. Ref. [27] performed a gauge transformation

Aµν = Bµν + (∇µ∇ν + H2γµν)X, X =
3

4H
ϕ. (93)

Then the action becomes

Seff =
1

κ2H

∫

d4x
√−γ

{

− BµνXµν(B) − H2BµνBµν + H2B2

− ϕH(∇µ∇ν − γµν24 − 3H2γµν)Bµν

}

.

(94)

They propose to treat the spin-0 perturbation ϕ as a Lagrangian multiplier and perform quantization a
la Nakanishi-Lautrup way in the QED. Effectively, this removes ϕ from the spectrum and the enhanced
symmetry ensures that there is no helicity-0 mode and no ghost (see Ref. [52] for a criticism on this proce-
dure). However, this method cannot be applied if there is matter fluctuations with non-zero trace of energy-
momentum tensor. This is because the trace of energy-momentum tensor breaks the enhanced symmetry
and excite ϕ as we saw in section IV.A.

The other way to remove the ghost is to take into account the non-normalizable modes in the spectrum
[27]. Then it is possible to eliminate the double pole from the amplitude that was the origin of the ghost.
Instead, the amplitude has a single pole corresponding to the non-normalizable massless mode. However, it
is found that this massless mode has an opposite sign for the amplitude compared with continuous massive
states. This indicates that this massless mode becomes ghost-like. A very similar phenomena was found in
the analysis of the shock wave analysis where the non-normalizable modes contribute a repulsive potential
[26, 53].

Modifying the model

Finally, in order to remove the ghost from the theory, we may have to modify the starting action. There
are several attempts to extend the model [28, 54–57]. As we explained in section III.D, it is impossible to
remove the ghost in two-brane model [28]. It was also shown that the introduction of Gauss-Bonnet term in
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the bulk does not help [54]. Recently, a new model was proposed where the bulk is the solution in the normal
branch but the junction condition is the one in the self-accelerating branch [56]. In order to achieve this, the
5D Einstein -Hilbert action with a opposite sign to the conventional one is assumed to be localized near the
brane. It remains to be seen whether this model can evade the ghost or not by studying the perturbations.
The other approach would be consider higher co-dimensional branes [58] or intersecting branes [59]. It still
remains to be seen whether there exists the self-accelerating universe and there is no ghost in these models.
It is also important to study whether it is possible to embed the DGP model in string theory [60]. A UV
completion of the model is necessary to study the fate of the ghost instability and it can guide us to make
some simple modification of the model that will ameliorate the problems discussed in this review [48].
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