43 research outputs found

    The intramolecular dynamics of a rigid yet twisty 'Ferrocenyl' TetraPhosphine : served with some 31P-NMR delicacy

    Get PDF
    Polydentate ferrocenyl phosphines equipped with bulky functional groups are regarded as rigid ligands capable of stabilizing and/or activating a broad range of chemical compounds such as smaller complexes (being formed e.g. in transition metal-catalyzed cross coupling reactions), nanoparticles, or even larger surfaces. The fruitful rigidity of these fascinating molecular species originates from the internal steric constraints imposed by the substituents; hence, the rotational reorientation of the Cp rings around the vertical 5-fold symmetry axis is hampered, and a permanent polydentate phosphine ‘cage’ is created (see figure). Latter construction then provides a large variety of coordination modes for the actual substrate what is the core structural feature being responsible for the diverse applicability spectrum. If such ferrocenyl phosphine is investigated on a sufficiently long i.e. ‘NMR time scale’ however, its decelerated intramolecular motions might be discovered and quantitatively characterized. Indeed, selective 1D 31P-{1H} EXSY {Exchange Spectroscopy} pointed out the exchange of the chemically distinct phosphoruses (green and red spheres below) in the scrutinized Fc(P)4tBu ligand and thus successfully demonstrated the previously unknown rotation (i.e. antiparallel twisting) of the Cp rings around the Fe centre. Series of measurements performed at different temperatures enabled the evaluation of the respective thermodynamic parameters (ΔS#, ΔH#, ΔG#) for which the influence of the solvent was also studied – while the confrontation of the experimental and theoretical values computed by DFT methods completed the analysis of the motion. In fact, the four 31P-s of Fc(P)4tBu composes an AA’BB’ spin system giving rise to a puzzling second order 31P NMR spectrum. Although the respective J-couplings had already been presented reclining upon the output of in silico simulations, a side track of the current work covered the full deduction of the results by the means of a quantum mechanical approach. Besides, the internal ring rotations shed new light on the ’through space’ nature of the JAA’ coupling affecting the inner phosphoruses (red spheres). That is, the interaction showed unquenchable and endured higher ring rotation rates than its actual frequency value what highlighted the intricacy of the magnetization transfer phenomena between the two nuclei. Finally, exchange phenomena were revealed for the complexed state of the ligand as well. According to 2D 1H–1H EXSY spectra, in case of [Pd(II)Br2-Fc(P)4tBu] the familiar twisting of the cyclopentadienyl rings was complemented with the periodic transconnection of the [Pd(II)Br2-] moiety between the bidentate (-PPH2)2 sites – perfectly illustrating the possibility for multiple coordination ways offered by polydentate phosphines

    Conformation and dynamics of the cyclic lipopeptide viscosinamide at the water-lipid interface

    Get PDF
    Cyclic lipodepsipeptides or CLiPs from Pseudomonas are secondary metabolites that mediate a wide range of biological functions for their producers, and display antimicrobial and anticancer activities. Direct interaction of CLiPs with the cellular membranes is presumed to be essential in causing these. To understand the processes involved at the molecular level, knowledge of the conformation and dynamics of CLiPs at the water-lipid interface is required to guide the interpretation of biophysical investigations in model membrane systems. We used NMR and molecular dynamics to study the conformation, location and orientation of the Pseudomonas CLiP viscosinamide in a water/dodecylphosphocholine solution. In the process, we demonstrate the strong added value of combining uniform, isotope-enriched viscosinamide and protein NMR methods. In particular, the use of techniques to determine backbone dihedral angles and detect and identify long-lived hydrogen bonds, establishes that the solution conformation previously determined in acetonitrile is maintained in water/dodecylphosphocholine solution. Paramagnetic relaxation enhancements pinpoint viscosinamide near the water-lipid interface, with its orientation dictated by the amphipathic distribution of hydrophobic and hydrophilic residues. Finally, the experimental observations are supported by molecular dynamics simulations. Thus a firm structural basis is now available for interpreting biophysical and bioactivity data relating to this class of compounds
    corecore