

THE INTRAMOLECULAR DYNAMICS OF A 'RIGID YET TWISTY' FERROCENYL

<u>B. Kovács¹, C. A. Urbina Blanco², M. Saeys², J.-C. Hierso³, José C. Martins¹</u>

¹NMR AND STRUCTURE ANALYSIS RESEARCH UNIT, DEPARTMENT OF ORGANIC AND MACROMOLECULAR CHEMISTRY, GHENT, BELGIUM ² LABORATORY FOR CHEMICAL TECHNOLOGY, DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING, GHENT UNIVERSITY, GHENT, BELGIUM ³LABORATOIRE DE SYNTHÈSE ET D'ELECTROSYNTHÈSE ORGANOMÉTALLIQUES, UNIVERSITÉ DE BOURGOGNE, DIJON, FRANCE

Introduction: multidentate ferrocenyl phosphines

- Multidentate ferrocenyl phosphines offers multiple coordinative sites for a ≡P: lone electron pair acceptor
- The Cp rings are typically equipped with bulky substituents \rightarrow the antiparallel ring rotation (twisting) is hindered \rightarrow a permanent coordinative 'cage' is formed consisted of multiple coordinative sites
- Application: molecular cluster, nanoparticle, surface stabilizators/activators [1], and common ligands in transition metal catalyzed Suzuki cross-coupling reactions [2]

in Ghent University 🈏

Universiteit Gent

@ugent

Benjamin.Kovacs@UGent.be /+32 (0)9 264 44 77

*Note: the assignments of the ³¹P NMR spectra were adapted from [4]. However, the interpretation of the peak multiplicities and the investigation of dynamic properties are novel results and the product of the authors of this work.