

BREAKING THE LIMITS OF NMR SPECTROSCOPY IN **PEPTIDE – MEMBRANE INTERACTION STUDIES USING ISOTOPE LABELLING**

Benjamin Kovacs, NMR & Structure Analysis Unit (NMRSTR), Ghent University

YBMRS, December 6 2018 – Spa

CLIPs – ORIGIN AND COMPOSITION

- <u>Cyclic lipodepsipeptides (CLiPs)</u> •
- Bacterial origin •

(Pseudomonas or Bacillus spp.)

 \rightarrow Produced via non ribosomal pathways

Primary structu	re:	β(OH)-decanoyl Leu	Gin a	Thr Val Leu Ser	Leu Ser Ile —
 Lipid tail + Oligop 	peptide chain				
\rightarrow Latter cyclized vi	Configuration: D or L Hydropathicity: hydrophobic or hydro				
\rightarrow Exotic AA pattern)	CLiP group	l:c	CLiP group	l:c
 More than 100 natural CLiPs 		Bananamide	8:6	Entolysin	14:5
		Syringomycin	9:9	Xantholysin	14:8
	• Classification:	Viscosin	9:7	Tolaasin	18:5
	total AA # (I)	Orfamide	10:8	Fuscopeptin	19:5
GHENT	AA # in the cycle (c)	Amphisin	11:9	Corpeptin	22:5
UNIVERSITY		Putisolvin	12:4	Syringopeptin	22:8 or 25:8

fatty acid

CLiPs – BIOLOGICAL ROLE

biosurfactants: cell motility

root colonization

Few CLiP Producers

- yet are promising candidates for clinical applications as well!
- **GHENT**

UNIVERSITY

antifungal activity

-CLIP

+CLiP

daptomycin *aka* Cubicin[@]

Geudens, N.; Martins, J., Front. Microbiol., 9, 1–18 (2018)

- antibacterial (e.g. Staphylococcus)
- **anticancer** (breast, kidney)
- antiviral (influenza, hepatitis)

• CLiP producers are plant associated

Plant health in the field

Many CLiP Producers Figure courtesy of Feyisara Eyiwumi Olorunleke

-CLiP

+CLiP

CLiPs – 3D STRUCTURE

- Solution state NMR spectroscopy and X-ray scattering
- → Characteristic backbone conformations / CLiP group

Backbone conformation of Viscosin-CLiPs (grey: C, blue: N, red: O)

CLiPs – 3D STRUCTURE

Merit of 'stapled helix' fold: **amphipathicity**

Geudens, N. et al., ChemBioChem, 15, 2736-2746 (2014)

- Biological membranes are likewise amphipathic...
- (How) do Viscosins interact with them?

VISCOSINS + MEMBRANES

- To mimic real conditions: detergents as model membrane systems ullet
- \rightarrow Viscosinamide (VA) + zwitterionic DPC (dodecylphosphocholine) comicelles
- \rightarrow PRE + MD simulation studies

Geudens, N., Kovacs, B.; et. al., Molecules, in preparation

Diffusion coefficients $D(VA) = 80.9 \pm 0.5 \ \mu m^{2.} s^{-1}$ $D(DPC) = 79.6 \pm 4.0 \ \mu m^{2.} s^{-1}$ coherent motion!

RIGID VISCOSINS! (?)

 \rightarrow CD: Viscosins retain their 'free state' structure?

Adapted from Geudens, N.; Nasir, M. et al.. Biochim Biophys Acta, 1859, 331-339 (2017)

COMMON METHODS IN CLIP RESEARCH: ¹H-NMR

 \rightarrow Isotope enrichment is needed!

PRODUCTION OF ¹³C-, ¹⁵N-ENRICHED VISCOSINAMIDE

PRODUCTION OF ¹³C-, ¹⁵N-ENRICHED VISCOSINAMIDE

Viscosinamide: ${}^{12}C_{54}H_{96}O_{15}{}^{14}N_{10} \rightarrow {}^{13}C_{54}H_{96}O_{15}{}^{15}N_{10}$ LC-MS data \checkmark

'states' confirmed by DOSY measurements

First ¹³C- and ¹⁵N-enriched CLiP

Sample 2

Comicellised

state 90% H₂O/10%D₂O + DPC [VA] = 5.75 mM [DPC] = 151 mM \rightarrow ~ 2 peptide/micelle

Vuister, G.; Bax, A., J. Am. Chem. Soc., 115, 7772–7777 (1995)

PHI TORSION ANGLES

Hydropathicity: hydrophobic hydrophilic

Stereochemistry:

) HNF	<u>IA:</u>					
	T 3	V4	L5	S6	L7	S 8	19
1	7.65	6.01	6.72	8.41	5.79	9.08	10.21
8	7.52	5.91	6.71	8.28	5.87	8.84	10.17

• No systematic deviations ($\rightarrow T_{2ap} \sim T_{2ip}$)

PHI TORSION ANGLES

 ${}^{3}J_{\text{HN-HA}}$ in comicellised vs free state:

Stereochemistry:

PHI TORSION ANGLES

${}^{3}J_{\text{HN-HA}} \rightarrow \varphi$ in comicellised vs free state:

D

- Karplus curves: Wang, A.,; Bax, A., J. A. Chem. Soc., 118,2483–2494 (1996) •
- : ${}^{3}J_{\text{HN-H}\alpha} = 6.98 \cos^{2}(\varphi 60) 1.38 \cos(\varphi 60) + 1.72 \longrightarrow \text{max. 10 Hz} \longrightarrow {}^{3}J_{\text{HN-H}\alpha}(\mathbf{I9}) > 10 \text{ Hz}$
 - : ${}^{3}J_{\text{HN-H}\alpha} = 6.98 \cos^{2}(\varphi + 60) 1.38 \cos(\varphi + 60) + 1.72$

L1

Iong range HNCO experiment → N–H[…]O=C H-bonds

• <u>HNCO</u>: $H^{N} \xrightarrow{15} N \xrightarrow{15} I^{3}C' \xrightarrow{15} N \xrightarrow{15} H^{N}$ (detection)

• (weak
$${}^{2}J_{\text{N-C}}$$
 also visible

15**N**

Max. 3 C' cross peaks to each H^N (effect of ¹J_{N-C'} breaks through)
Here: N–H(i)[...]O=C(j) H-bond

• VA in free state:

• VA in free state:

N-H[]O=C #	AA-s	
1	$V4(H^N) \rightarrow O=C HDA$	

• VA in free state:

N-H[]O=C #	AA-s
1	$V4(H^N) \rightarrow O=C HDA$
2	$L5(H^N) \rightarrow O=C L1$

VA in free state: •

N-H[]O=C #	AA-s
1	$V4(H^N) \rightarrow O=C HDA$
2	$L5(H^N) \rightarrow O=C L1$
3	$S8(H^N) \rightarrow O=C T3$

VA in free state: •

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s
	1	$V4(H^N) \rightarrow O=C HDA$
	2	$L5(H^N) \rightarrow O=C L1$
	3	S8 (H ^N) → O=C T3
UNIVERSITY		

VA in free state: \bullet

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s	^{3h} J_{N-C} , /
	1	$V4(H^N) \rightarrow O=C HDA$	-0.3
	2	$L5(H^N) \rightarrow O=C L1$	-0.4
	3	$S8(H^N) \rightarrow O=C T3$	-0.2
UNIVERSITY			

<u>lifetime of H-bond:</u> $\tau \geq \frac{1}{\left|{}^{3h}J_{N-C'}\right|} \sim S$

From <u>reference</u> spectrum: $^{1}J_{\rm NC'} = -15$ Hz is assumed

VA in free state: •

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s	^{3h} <i>J</i> _{N-C} ,/ Hz
	1	$V4(H^N) \rightarrow O=C HDA$	-0.30
	2	$L5(H^N) \rightarrow O=C L1$	-0.44
	3	$S8(H^N) \rightarrow O=C T3$	-0.25
UNIVERSITY			

? S6 $H^N \rightarrow O=C Q2$

MD simulation in AcN

VA in free state: •

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s	^{3h} <i>J</i> _{N-C} ,/ Hz
	1	$V4(H^N) \rightarrow O=C HDA$	-0.30
	2	$L5(H^N) \rightarrow O=C L1$	-0.44
	3	$S8(H^N) \rightarrow O=C T3$	-0.25
NIVERSITY			

S6 OH \rightarrow O=C Q2

MD simulation in AcN

• VA in free state:

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s	^{3h} J _{N-C} ,/ Hz
	1	$V4(H^N) \rightarrow O=C HDA$	-0.30
	2	$L5(H^N) \rightarrow O=C L1$	-0.44
	3	S8 (H ^N) → O=C T3	-0.25
UNIVERSITY			

)

HDA

S6 OH \rightarrow O=C Q2 S8 OH \rightarrow OH S6

MD simulation in AcN

rigid!

VA in free state: •

• VA in comicellised state:

• ${}^{2}J_{\text{N-C}}$ and ${}^{1}J_{\text{N-C}}$ cross peaks are also visible

	N-H[]O=C #	AA-s	^{3h} J _{N-C} ,/ Hz : free	^{3h} J _{N-C} ,/ Hz : comicellised
~	1	$V4(H^N) \rightarrow O=C HDA$	-0.30	observed
	2	$L5(H^N) \rightarrow O=C L1$	-0.44	-0.43
GHENT	3	S8 (H ^N) → O=C T3	-0.25	observed
UNIVERSITY				

* Quantification not possible due to peak overlaps

25

- Experimental data: N–H [...] O=C Hlacksquarebond pattern of VA is rigid upon transition
- MD simulations: Ser side-chain H-bonds pattern of VA is rigid upon transition

	N-H[]O=C #	AA-s	^{3h} J _{N-C} ,/ Hz : free	^{3h} J _{N-C} ,/ Hz : comicellised
	1	$V4(H^N) \rightarrow O=C HDA$	-0.30	observed
	2	$L5(H^N) \rightarrow O=C L1$	-0.44	-0.43
GHENT	3	$S8(H^N) \rightarrow O=C T3$	-0.25	observed
UNIVERSITY				

SUMMARY

- CLiPs possess a wide bioactivity range \rightarrow membrane interactions?
- VA structure upon interaction with model membrane system
- \rightarrow Heteronuclear NMR spectroscopy
- Isotope enrichment: first ¹³C-, ¹⁵N-labelled CLiP

ACKNOWLEDGEMENTS

NMR & Structural Analysis Unit, UGent

- Prof. Dr. José C. Martins
- Niels Geudens
- Tim Courtin
- Vic De Roo

Laboratory of Phytopathology, UGent

- Prof. Dr. Monica Höfte
- Feyisara Eyiwumi Olorunleke
- Olumide Owolabi Omoboye
- Enrico Ferrarini
- Ilse Delaere

NMR Expertise Centre, UGent

Benjamin Kovacs PhD student

DEPARTMENT OF ORGANIC AND MACROMOLECULAR CHEMISTRY

E Benjamin.Kovacs@ugent.beT +32 9 264 44 77

f Ghent University@ugentin Ghent University

https://www.ugent.be/we/orgchem/nmr-structure-analysis/en

Y